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Conversion Factors from BG to SI Units

To convert from To Multiply by
Acceleration ft/s> m/s’ 0.3048
Area ft? m? 9.2903 E — 2
mi’ m? 2.5900 E + 6
acres m’ 40469 E + 3
Density slug/ft® kg/m® 5.1538 E + 2
Ibm/ft® kg/m® 1.6019 E + 1
Energy ft-1bf J 1.3558
Btu J 1.OS51E +3
cal J 4.1868
Force Ibf N 4.4482
kef N 9.8067
Length ft m 0.3048
in m 25400 E — 2
mi (statute) m 1.6093 E + 3
nmi (nautical) m 1.8520 E + 3
Mass slug kg 14594 E + 1
Ibm kg 4.5359E — 1
Mass flow slug/s kg/s 14594 E + 1
Ibm/s kg/s 4.5359E — 1
Power ft-1bf/s W 1.3558
hp \Y 74570 E + 2




Conversion Factors from BG to SI Units (Continued)

To convert from To Multiply by
Pressure 1bt/ft> Pa 47880 E + 1
1bf/in? Pa 6.8948 E + 3
atm Pa 10133 E+ 5
mm Hg Pa 1.3332E +2
Specific weight Ibf/ft> N/m? 1.5709 E + 2
Specific heat ft%/(s*°R) m*/(s*-K) 1.6723 E — 1
Surface tension Ibf/ft N/m 14594 E + 1
Temperature °F °C te = 3ty — 32°
°R K 0.5556
Velocity ft/s m/s 0.3048
mi/h m/s 44704 E — 1
knot m/s 5.1444 E — 1
Viscosity Ibf-s/ft* N-s/m? 47880 E + 1
g/(cm-s) N-s/m? 0.1
Volume ft> m’ 2.8317E — 2
L m’ 0.001
gal (U.S.) m’ 37854 E — 3
fluid ounce (U.S.) m’ 29574E -5
Volume flow /s m’/s 2.8317E -2
gal/min m’/s 6.3090 E — 5




EQUATION SHEET

Ideal-gas law: p = pRT, R, = 287 J/kg-K

Surface tension: Ap = Y(R; ' + R ")

Hydrostatics, constant density:

p2—p1= —Y(2—z1), Y= pg

Hydrostatic panel force: F = yhcgA,
Ycp— —Imsme/(hCGA), Xcp— _IxySIHO/(hCGA)

Buoyant force:

Fg = 7Yuia(displaced volume)

CV mass: d/di( fcvpdv) + X2 (pAV)
— 2(pAV)in = 0

out

CV momentum: d/di( [ pVdv)
+ 2 [(pPAV)V ]y — Z[(pAV)V ], = ZF

CV angular momentum: d/dt( [ o p(roXV)dv)
+ EPAV(rO >(Vv)out_ EPAV(rOXV)in: EMO

Steady flow energy: (p/ 'y+aV2/2g+Z)in =

(p/ v+ aV2/ Zg +Z)out + hfriction - hpump + hturbine

Acceleration: dV/dt = 0V/ot
+u(dV/ax) + v(aV/dy) +w(aV/dz)

Incompressible continuity: V - V. =0

Navier-Stokes: p(dV/df)=pg—Vp+uV>V

Incompressible stream function (x,y):

u=oy/dy, v=—0Y/dx

Velocity potential ¢(x,y,z):
u = dp/ox;v = dp/dy; w = d¢/az

Bernoulli unsteady irrotational flow:

d¢p/at + [dp/p + V?/2 + gz = Const

Turbulent friction factor: 1/Vf =
—2.0log;o[&/(3.7d) + 2.51/(Re, V)]

Pipe head loss: hy = f(L/d)Vz/(Zg)

where f = Moody chart friction factor

Orifice, nozzle, venturi flow:

0=C A ron 20p/{p(1—BHY?, B = d/D

Laminar flat plate flow: 6/x = 5.0/Re)lc/ 2,

¢; = 0.664/Re)”, Cp = 1.328/Re;”

Turbulent flat plate flow: o6/x = 0.16/Re,1/ 7
¢ = 0.027/Rey’, Cp, = 0.031/Re;”

Cp = Drag/(3pV?A); C, = Lift/(3pV?A)

2-D potential flow: V¢ = V2 = 0

Isentropic flow: Ty/T =1+ {(k—1)/2}Ma?,

polp = (To/TY'*™ D, polp = (TP

One-dimensional isentropic area change:

AJA*=(1/Ma)[1+{(k—1)/2}Ma*]/2E+DE=D

Prandtl-Meyer expansion: K = (k+1)/(k—1),
w=K"tan"'[(Ma®— 1)/K]"*—tan"'(Ma®— 1)

Uniform flow, Manning’s n, SI units:

Vo(m/s) = (1.0/n)[R(m)]*>Ss"

Gradually varied channel flow:

dyldx = (So— S)/(1 — Fr?), Fr = V[V

Euler turbine formula:

Power = pQ(u,V,, — u1Vy), u = ro
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General Approach

Learning Tools

Content Changes

Preface

The seventh edition of Fluid Mechanics sees some additions and deletions but no
philosophical change. The basic outline of eleven chapters, plus appendices, remains
the same. The triad of integral, differential, and experimental approaches is retained.
Many problem exercises, and some fully worked examples, have been changed. The
informal, student-oriented style is retained. A number of new photographs and figures
have been added. Many new references have been added, for a total of 435. The writer
is a firm believer in “further reading,” especially in the postgraduate years.

The total number of problem exercises continues to increase, from 1089 in the first
edition, to 1675 in this seventh edition. There are approximately 20 new problems
added to each chapter. Most of these are basic end-of-chapter problems, classified
according to topic. There are also Word Problems, multiple-choice Fundamentals of
Engineering Problems, Comprehensive Problems, and Design Projects. The appendix
lists approximately 700 Answers to Selected Problems.

The example problems are structured in the text to follow the sequence of recom-
mended steps outlined in Sect. 1.3, Problem-Solving Techniques.

The Engineering Equation Solver (EES) is available with the text and continues
its role as an attractive tool for fluid mechanics and, indeed, other engineering prob-
lems. Not only is it an excellent solver, but it also contains thermophysical proper-
ties, publication-quality plotting, units checking, and many mathematical functions,
including numerical integration. The author is indebted to Sanford Klein and William
Beckman, of the University of Wisconsin, for invaluable and continuous help in
preparing and updating EES for use in this text. For newcomers to EES, a brief guide
to its use is found on this book’s website.

There are some revisions in each chapter.

Chapter 1 has added material on the history of late 20th century fluid mechanics,
notably the development of Computational Fluid Dynamics. A very brief introduction
to the acceleration field has been added. Boundary conditions for slip flow have been
added. There is more discussion of the speed of sound in liquids. The treatment of
thermal conductivity has been moved to Chapter 4.

xi



xii

Preface

Chapter 2 introduces a photo, discussion, and new problems for the deep ocean
submersible vehicle, ALVIN. The density distribution in the troposphere is now given
explicitly. There are brief remarks on the great Greek mathematician, Archimedes.

Chapter 3 has been substantially revised. Reviewers wanted Bernoulli’s equation
moved ahead of angular velocity and energy, to follow linear momentum. I did this
and followed their specific improvements, but truly extensive renumbering and rear-
ranging was necessary. Pressure and velocity conditions at a tank surface have an
improved discussion. A brief history of the control volume has been added. There is
a better treatment of the relation between Bernoulli’s equation and the energy equa-
tion. There is a new discussion of stagnation, static and dynamic pressures, and
boundary conditions at a jet exit.

Chapter 4 has a great new opener: CFD for flow past a spinning soccer ball. The
total time derivative of velocity is now written out in full. Fourier’s Law, and its appli-
cation to the differential energy equation, have been moved here from Chapter 1.
There are 21 new problems, including several slip-flow analyses.

The Chapter 5 introduction expands on the effects of Mach number and Froude
number, instead of concentrating only on the Reynolds number. Ipsen’s method, which
the writer admires, is retained as an alternative to the pi theorem. The new opener, a
giant disk-band-gap parachute, allows for several new dimensional analysis problems.

Chapter 6 has a new formula for entrance length in turbulent duct flow, sent to me
by two different researchers. There is a new problem describing the flow in a fuel
cell. The new opener, the Trans-Alaska Pipeline, allows for several innovative prob-
lems, including a related one on the proposed Alaska-Canada natural gas pipeline.

Chapter 7 has an improved description of turbulent flow past a flat plate, plus recent
reviews of progress in turbulence modeling with CFD. Two new aerodynamic
advances are reported: the Finaish-Witherspoon redesign of the Kline-Fogelman air-
foil and the increase in stall angle achieved by tubercles modeled after a humpback
whale. The new Transition® flying car, which had a successful maiden flight in 2009,
leads to a number of good problem assignments. Two other photos, Rocket Man over
the Alps, and a cargo ship propelled by a kite, also lead to interesting new problems.

Chapter 8 is essentially unchanged, except for a bit more discussion of modern
CFD software. The Transition® autocar, featured in Chapter 7, is attacked here by
aerodynamic theory, including induced drag.

Chapter 9 benefited from reviewer improvement. Figure 9.7, with its 30-year-old
curve-fits for the area ratio, has been replaced with fine-gridded curves for the area-
change properties. The curve-fits are gone, and Mach numbers follow nicely from
Fig. 9.7 and either Excel or EES. New Trends in Aeronautics presents the X-43 Scram-
jet airplane, which generates several new problem assignments. Data for the proposed
Alaska-to-Canada natural gas pipeline provides a different look at frictional choking.

Chapter 10 is basically the same, except for new photos of both plane and circu-
lar hydraulic jumps, plus a tidal bore, with their associated problem assignments.

Chapter 11 has added a section on the performance of gas turbines, with applica-
tion to turbofan aircraft engines. The section on wind turbines has been updated, with
new data and photos. A wind-turbine-driven vehicle, which can easily move directly
into the wind, has inspired new problem assignments.



Online Supplements

Electronic Textbook Options

Preface xiii

Appendix A has new data on the bulk modulus of various liquids. Appendix B,
Compressible Flow Tables, has been shortened by using coarser increments (0.1) in
Mach number. Tables with much smaller increments are now on the book website.
Appendix E, Introduction to EES, has been deleted and moved to the website, on the
theory that most students are now quite familiar with EES.

A number of supplements are available to students and/or instructors at the text
website www.mhhe.com/white7e. Students have access to a Student Study Guide
developed by Jerry Dunn of Texas A&M University. They are also able to utilize
Engineering Equation Solver (EES), fluid mechanics videos developed by Gary Set-
tles of Pennsylvania State University, and CFD images and animations prepared by
Fluent Inc. Also available to students are Fundamentals of Engineering (FE) Exam
quizzes, prepared by Edward Anderson of Texas Tech University.

Instructors may obtain a series of PowerPoint slides and images, plus the full Solu-
tions Manual, in PDF format. The Solutions Manual provides complete and detailed
solutions, including problem statements and artwork, to the end-of-chapter problems. It
may be photocopied for posting or preparing transparencies for the classroom. Instruc-
tors can also obtain access to C.O.S.M.O.S. for the seventh edition. C.0.S.M.O.S. is a
Complete Online Solutions Manual Organization System instructors can use to create
exams and assignments, create custom content, and edit supplied problems and
solutions.

Ebooks are an innovative way for students to save money and create a greener
environment at the same time. An ebook can save students about half the cost of a
traditional textbook and offers unique features like a powerful search engine, high-
lighting, and the ability to share notes with classmates using ebooks.

McGraw-Hill offers this text as an ebook. To talk about the ebook options, con-
tact your McGraw-Hill sales rep or visit the site www.coursesmart.com to learn more.


www.mhhe.com/white7e
www.coursesmart.com
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Hurricane Rita in the Gulf of Mexico, Sept. 22, 2005. Rita made landfall at the Texas-Louisiana
border and caused billions of dollars in wind and flooding damage. Though more dramatic than
typical applications in this text, Rita is a true fluid flow, strongly influenced by the earth’s rota-
tion and the ocean temperature. (Photo courtesy of NASA.)



1.1 Preliminary Remarks

Chapter 1
Introduction

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid
statics). Both gases and liquids are classified as fluids, and the number of fluid engi-
neering applications is enormous: breathing, blood flow, swimming, pumps, fans, tur-
bines, airplanes, ships, rivers, windmills, pipes, missiles, icebergs, engines, filters, jets,
and sprinklers, to name a few. When you think about it, almost everything on this
planet either is a fluid or moves within or near a fluid.

The essence of the subject of fluid flow is a judicious compromise between theory
and experiment. Since fluid flow is a branch of mechanics, it satisfies a set of well-
documented basic laws, and thus a great deal of theoretical treatment is available. How-
ever, the theory is often frustrating because it applies mainly to idealized situations,
which may be invalid in practical problems. The two chief obstacles to a workable the-
ory are geometry and viscosity. The basic equations of fluid motion (Chap. 4) are too
difficult to enable the analyst to attack arbitrary geometric configurations. Thus most
textbooks concentrate on flat plates, circular pipes, and other easy geometries. It is pos-
sible to apply numerical computer techniques to complex geometries, and specialized
textbooks are now available to explain the new computational flid dynamics (CFD)
approximations and methods [1—4]." This book will present many theoretical results
while keeping their limitations in mind.

The second obstacle to a workable theory is the action of viscosity, which can be
neglected only in certain idealized flows (Chap. 8). First, viscosity increases the diffi-
culty of the basic equations, although the boundary-layer approximation found by
Ludwig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow analyses. Sec-
ond, viscosity has a destabilizing effect on all fluids, giving rise, at frustratingly small
velocities, to a disorderly, random phenomenon called furbulence. The theory of tur-
bulent flow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite
serviceable as an engineering estimate. This textbook only introduces the standard
experimental correlations for turbulent time-mean flow. Meanwhile, there are advanced
texts on both time-mean furbulence and turbulence modeling [5, 6] and on the newer,
computer-intensive direct numerical simulation (DNS) of fluctuating turbulence [7, 8].

'Numbered references appear at the end of each chapter.
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1.2 History and Scope of
Fluid Mechanics

Fig. 1.1 Leonhard Euler (1707—
1783) was the greatest mathemati-
cian of the eighteenth century and
used Newton’s calculus to develop
and solve the equations of motion
of inviscid flow. He published over
800 books and papers. [Courtesy
of the School of Mathematics and
Statistics, University of St Andrew,
Scotland. ]

Thus there is theory available for fluid flow problems, but in all cases it should
be backed up by experiment. Often the experimental data provide the main source
of information about specific flows, such as the drag and lift of immersed bodies
(Chap. 7). Fortunately, fluid mechanics is a highly visual subject, with good instru-
mentation [9-11], and the use of dimensional analysis and modeling concepts
(Chap. 5) is widespread. Thus experimentation provides a natural and easy comple-
ment to the theory. You should keep in mind that theory and experiment should go
hand in hand in all studies of fluid mechanics.

Like most scientific disciplines, fluid mechanics has a history of erratically occurring
early achievements, then an intermediate era of steady fundamental discoveries in the
eighteenth and nineteenth centuries, leading to the twenty-first-century era of “modern
practice,” as we self-centeredly term our limited but up-to-date knowledge. Ancient
civilizations had enough knowledge to solve certain flow problems. Sailing ships with
oars and irrigation systems were both known in prehistoric times. The Greeks pro-
duced quantitative information. Archimedes and Hero of Alexandria both postulated
the parallelogram law for addition of vectors in the third century B.C. Archimedes
(285-212 B.C.) formulated the laws of buoyancy and applied them to floating and sub-
merged bodies, actually deriving a form of the differential calculus as part of the
analysis. The Romans built extensive aqueduct systems in the fourth century B.C. but
left no records showing any quantitative knowledge of design principles.

From the birth of Christ to the Renaissance there was a steady improvement in the
design of such flow systems as ships and canals and water conduits but no recorded
evidence of fundamental improvements in flow analysis. Then Leonardo da Vinci
(1452-1519) stated the equation of conservation of mass in one-dimensional steady
flow. Leonardo was an excellent experimentalist, and his notes contain accurate
descriptions of waves, jets, hydraulic jumps, eddy formation, and both low-drag
(streamlined) and high-drag (parachute) designs. A Frenchman, Edme Mariotte
(1620-1684), built the first wind tunnel and tested models in it.

Problems involving the momentum of fluids could finally be analyzed after Isaac
Newton (1642—1727) postulated his laws of motion and the law of viscosity of the lin-
ear fluids now called newtonian. The theory first yielded to the assumption of a “per-
fect” or frictionless fluid, and eighteenth-century mathematicians (Daniel Bernoulli,
Leonhard Euler, Jean d’ Alembert, Joseph-Louis Lagrange, and Pierre-Simon Laplace)
produced many beautiful solutions of frictionless-flow problems. Euler, Fig. 1.1, devel-
oped both the differential equations of motion and their integrated form, now called
the Bernoulli equation. D’ Alembert used them to show his famous paradox: that a body
immersed in a frictionless fluid has zero drag. These beautiful results amounted to
overkill, since perfect-fluid assumptions have very limited application in practice and
most engineering flows are dominated by the effects of viscosity. Engineers began to
reject what they regarded as a totally unrealistic theory and developed the science of
hydraulics, relying almost entirely on experiment. Such experimentalists as Chéy,
Pitot, Borda, Weber, Francis, Hagen, Poiseuille, Darcy, Manning, Bazin, and Weisbach
produced data on a variety of flows such as open channels, ship resistance, pipe flows,
waves, and turbines. All too often the data were used in raw form without regard to
the fundamental physics of flow.



Fig. 1.2 Ludwig Prandtl (1875-
1953), often called the “father of
modern fluid mechanics” [15],
developed boundary layer theory
and many other innovative analy-
ses. He and his students were
pioneers in flow visualization
techniques. [Aufnahme von Fr.
Struckmeyer, Gottingen, courtesy
AIP Emilio Segre Visual Archives,
Lande Collection.]
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At the end of the nineteenth century, unification between experimental hydraulics
and theoretical hydrodynamics finally began. William Froude (1810-1879) and his son
Robert (1846-1924) developed laws of model testing; Lord Rayleigh (1842-1919)
proposed the technique of dimensional analysis; and Osborne Reynolds (1842-1912)
published the classic pipe experiment in 1883, which showed the importance of the
dimensionless Reynolds number named after him. Meanwhile, viscous-flow theory
was available but unexploited, since Navier (1785-1836) and Stokes (1819—1903) had
successfully added newtonian viscous terms to the equations of motion. The result-
ing Navier-Stokes equations were too difficult to analyze for arbitrary flows. Then, in
1904, a German engineer, Ludwig Prandtl (1875-1953), Fig. 1.2, published perhaps the
most important paper ever written on fluid mechanics. Prandtl pointed out that fluid flows
with small viscosity, such as water flows and airflows, can be divided into a thin vis-
cous layer, or boundary layer, near solid surfaces and interfaces, patched onto a nearly
inviscid outer layer, where the Euler and Bernoulli equations apply. Boundary-layer
theory has proved to be a very important tool in modern flow analysis. The twentieth-
century foundations for the present state of the art in fluid mechanics were laid in a series
of broad-based experiments and theories by Prandtl and his two chief friendly competi-
tors, Theodore von Kéama (1881— 1963) and Sir Geoffrey 1. Taylor (1886— 1975). Many
of the results sketched here from a historical point of view will, of course, be discussed
in this textbook. More historical details can be found in Refs. 12 to 14.

The second half of the twentieth century introduced a new tool: Computational
Fluid Dynamics (CFD). The earliest paper on the subject known to this writer was
by A. Thom in 1933 [47], a laborious, but accurate, hand calculation of flow past a
cylinder at low Reynolds numbers. Commercial digital computers became available
in the 1950s, and personal computers in the 1970s, bringing CFD into adulthood. A
legendary first textbook was by Patankar [3]. Presently, with increases in computer
speed and memory, almost any laminar flow can be modeled accurately. Turbulent
flow is still calculated with empirical models, but Direct Numerical Simulation [7, 8]
is possible for low Reynolds numbers. Another five orders of magnitude in computer
speed are needed before general turbulent flows can be calculated. That may not be
possible, due to size limits of nano- and pico-elements. But, if general DNS devel-
ops, Gad-el-Hak [14] raises the prospect of a shocking future: all of fluid mechanics
reduced to a black box, with no real need for teachers, researchers, writers, or fluids
engineers.

Since the earth is 75 percent covered with water and 100 percent covered with air,
the scope of fluid mechanics is vast and touches nearly every human endeavor. The
sciences of meteorology, physical oceanography, and hydrology are concerned with
naturally occurring fluid flows, as are medical studies of breathing and blood circu-
lation. All transportation problems involve fluid motion, with well-developed spe-
cialties in aerodynamics of aircraft and rockets and in naval hydrodynamics of ships
and submarines. Almost all our electric energy is developed either from water flow
or from steam flow through turbine generators. All combustion problems involve fluid
motion as do the more classic problems of irrigation, flood control, water supply,
sewage disposal, projectile motion, and oil and gas pipelines. The aim of this book
is to present enough fundamental concepts and practical applications in fluid mechan-
ics to prepare you to move smoothly into any of these specialized fields of the sci-
ence of flow—and then be prepared to move out again as new technologies develop.
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1.3 Problem-Solving Techniques

1.4 The Concept of a Fluid

Fluid flow analysis is packed with problems to be solved. The present text has more
than 1700 problem assignments. Solving a large number of these is a key to learning
the subject. One must deal with equations, data, tables, assumptions, unit systems,
and solution schemes. The degree of difficulty will vary, and we urge you to sample
the whole spectrum of assignments, with or without the Answers in the Appendix.
Here are the recommended steps for problem solution:

1. Read the problem and restate it with your summary of the results desired.
From tables or charts, gather the needed property data: density, viscosity, etc.

3. Make sure you understand what is asked. Students are apt to answer the wrong
question—for example, pressure instead of pressure gradient, lift force instead
of drag force, or mass flow instead of volume flow. Read the problem carefully.

Make a detailed, labeled sketch of the system or control volume needed.

5. Think carefully and list your assumptions. You must decide if the flow is steady
or unsteady, compressible or incompressible, viscous or inviscid, and whether
a control volume or partial differential equations are needed.

6. Find an algebraic solution if possible. Then, if a numerical value is needed, use
either the SI or BG unit systems, to be reviewed in Sec. 1.6.

7. Report your solution, labeled, with the proper units and the proper number of
significant figures (usually two or three) that the data uncertainty allows.

We shall follow these steps, where appropriate, in our example problems.

From the point of view of fluid mechanics, all matter consists of only two states, fluid
and solid. The difference between the two is perfectly obvious to the layperson, and it
is an interesting exercise to ask a layperson to put this difference into words. The tech-
nical distinction lies with the reaction of the two to an applied shear or tangential stress.
A solid can resist a shear stress by a static defiction; a flid cannot . Any shear stress
applied to a fluid, no matter how small, will result in motion of that fluid. The fluid
moves and deforms continuously as long as the shear stress is applied. As a corollary,
we can say that a fluid at rest must be in a state of zero shear stress, a state often called
the hydrostatic stress condition in structural analysis. In this condition, Mohr’s circle
for stress reduces to a point, and there is no shear stress on any plane cut through the
element under stress.

Given this definition of a fluid, every layperson also knows that there are two
classes of fluids, liquids and gases. Again the distinction is a technical one concern-
ing the effect of cohesive forces. A liquid, being composed of relatively close-packed
molecules with strong cohesive forces, tends to retain its volume and will form a free
surface in a gravitational field if unconfined from above. Free-surface flows are dom-
inated by gravitational effects and are studied in Chaps. 5 and 10. Since gas mole-
cules are widely spaced with negligible cohesive forces, a gas is free to expand until
it encounters confining walls. A gas has no definite volume, and when left to itself
without confinement, a gas forms an atmosphere that is essentially hydrostatic. The
hydrostatic behavior of liquids and gases is taken up in Chap. 2. Gases cannot form
a free surface, and thus gas flows are rarely concerned with gravitational effects other
than buoyancy.



Fig. 1.3 A solid at rest can resist
shear. (a) Static deflection of the
solid; (b) equilibrium and Mohr’s
circle for solid element A. A fluid
cannot resist shear. (¢) Containing
walls are needed; (d) equilibrium
and Mohr’s circle for fluid
element A.
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Figure 1.3 illustrates a solid block resting on a rigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed
line, resisting shear without flow. A free-body diagram of element A on the side of
the block shows that there is shear in the block along a plane cut at an angle 6 through
A. Since the block sides are unsupported, element A has zero stress on the left and
right sides and compression stress o = —p on the top and bottom. Mohr’s circle does
not reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.3 require the supporting walls in
order to eliminate shear stress. The walls exert a compression stress of —p and reduce
Mohr’s circle to a point with zero shear everywhere—that is, the hydrostatic condi-
tion. The liquid retains its volume and forms a free surface in the container. If the walls
are removed, shear develops in the liquid and a big splash results. If the container is
tilted, shear again develops, waves form, and the free surface seeks a horizontal con-
figuration, pouring out over the lip if necessary. Meanwhile, the gas is unrestrained
and expands out of the container, filling all available space. Element A in the gas is
also hydrostatic and exerts a compression stress —p on the walls.
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1.5 The Fluid as a Continuum

In the previous discussion, clear decisions could be made about solids, liquids, and
gases. Most engineering fluid mechanics problems deal with these clear cases—that is,
the common liquids, such as water, oil, mercury, gasoline, and alcohol, and the com-
mon gases, such as air, helium, hydrogen, and steam, in their common temperature and
pressure ranges. There are many borderline cases, however, of which you should be
aware. Some apparently “solid” substances such as asphalt and lead resist shear stress
for short periods but actually deform slowly and exhibit definite fluid behavior over
long periods. Other substances, notably colloid and slurry mixtures, resist small shear
stresses but “yield” at large stress and begin to flow as fluids do. Specialized textbooks
are devoted to this study of more general deformation and flow, a field called
rheology [16]. Also, liquids and gases can coexist in two-phase mixtures, such as
steam—water mixtures or water with entrapped air bubbles. Specialized textbooks pres-
ent the analysis of such multiphase fiws [17]. Finally, in some situations the distinc-
tion between a liquid and a gas blurs. This is the case at temperatures and pressures
above the so-called critical point of a substance, where only a single phase exists, pri-
marily resembling a gas. As pressure increases far above the critical point, the gaslike
substance becomes so dense that there is some resemblance to a liquid and the usual
thermodynamic approximations like the perfect-gas law become inaccurate. The criti-
cal temperature and pressure of water are 7, = 647 K and p. = 219 atm (atmospherez)
so that typical problems involving water and steam are below the critical point. Air,
being a mixture of gases, has no distinct critical point, but its principal component,
nitrogen, has 7, = 126 K and p. = 34 atm. Thus typical problems involving air are
in the range of high temperature and low pressure where air is distinctly and definitely
a gas. This text will be concerned solely with clearly identifiable liquids and gases,
and the borderline cases just discussed will be beyond our scope.

We have already used technical terms such as flid pressure and density without a rig-
orous discussion of their definition. As far as we know, fluids are aggregations of mol-
ecules, widely spaced for a gas, closely spaced for a liquid. The distance between mol-
ecules is very large compared with the molecular diameter. The molecules are not fixed
in a lattice but move about freely relative to each other. Thus fluid density, or mass per
unit volume, has no precise meaning because the number of molecules occupying a given
volume continually changes. This effect becomes unimportant if the unit volume is large
compared with, say, the cube of the molecular spacing, when the number of molecules
within the volume will remain nearly constant in spite of the enormous interchange of
particles across the boundaries. If, however, the chosen unit volume is too large, there
could be a noticeable variation in the bulk aggregation of the particles. This situation is
illustrated in Fig. 1.4, where the “density” as calculated from molecular mass om within
a given volume 87 is plotted versus the size of the unit volume. There is a limiting vol-
ume 67* below which molecular variations may be important and above which aggre-
gate variations may be important. The density p of a fluid is best defined as

— lim ™
P=im. 5y

(1.1)

One atmosphere equals 2116 Ibf/ft> = 101,300 Pa.



Fig. 1.4 The limit definition of
continuum fluid density: (a) an
elemental volume in a fluid region
of variable continuum density;

(b) calculated density versus size
of the elemental volume.
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The limiting volume 8¥* is about 10~° mm? for all liquids and for gases at atmo-
spheric pressure. For example, 102 mm? of air at standard conditions contains approx-
imately 3 X 10’ molecules, which is sufficient to define a nearly constant density
according to Eq. (1.1). Most engineering problems are concerned with physical dimen-
sions much larger than this limiting volume, so that density is essentially a point func-
tion and fluid properties can be thought of as varying continually in space, as sketched
in Fig. 1.4a. Such a fluid is called a continuum, which simply means that its varia-
tion in properties is so smooth that differential calculus can be used to analyze the
substance. We shall assume that continuum calculus is valid for all the analyses in
this book. Again there are borderline cases for gases at such low pressures that molec-
ular spacing and mean free path® are comparable to, or larger than, the physical size
of the system. This requires that the continuum approximation be dropped in favor of
a molecular theory of rarefied gas flow [18]. In principle, all fluid mechanics problems
can be attacked from the molecular viewpoint, but no such attempt will be made here.
Note that the use of continuum calculus does not preclude the possibility of discon-
tinuous jumps in fluid properties across a free surface or fluid interface or across a
shock wave in a compressible fluid (Chap. 9). Our calculus in analyzing fluid flow
must be flexible enough to handle discontinuous boundary conditions.

A dimension is the measure by which a physical variable is expressed quantitatively.
A unit is a particular way of attaching a number to the quantitative dimension. Thus
length is a dimension associated with such variables as distance, displacement, width,
deflection, and height, while centimeters and inches are both numerical units for
expressing length. Dimension is a powerful concept about which a splendid tool called
dimensional analysis has been developed (Chap. 5), while units are the numerical
quantity that the customer wants as the final answer.

In 1872 an international meeting in France proposed a treaty called the Metric Con-
vention, which was signed in 1875 by 17 countries including the United States. It was
an improvement over British systems because its use of base 10 is the foundation of
our number system, learned from childhood by all. Problems still remained because

3The mean distance traveled by molecules between collisions (see Prob. P1.5).
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Table 1.1 Primary Dimensions in
SI and BG Systems

Primary Dimensions

The International System (SI)

The British Gravitational (BG)
System

Primary dimension SI unit BG unit Conversion factor
Mass {M} Kilogram (kg) Slug 1 slug = 14.5939 kg
Length {L} Meter (m) Foot (ft) 1 ft = 0.3048 m
Time {7} Second (s) Second (s) 1s=1s
Temperature {O} Kelvin (K) Rankine (°R) 1K = 1.8°R

even the metric countries differed in their use of kiloponds instead of dynes or
newtons, kilograms instead of grams, or calories instead of joules. To standardize the
metric system, a General Conference of Weights and Measures, attended in 1960 by
40 countries, proposed the International System of Units (SI). We are now undergo-
ing a painful period of transition to SI, an adjustment that may take many more years
to complete. The professional societies have led the way. Since July 1, 1974, SI units
have been required by all papers published by the American Society of Mechanical
Engineers, and there is a textbook explaining the SI [19]. The present text will use SI
units together with British gravitational (BG) units.

In fluid mechanics there are only four primary dimensions from which all other dimen-
sions can be derived: mass, length, time, and temperature.4 These dimensions and their
units in both systems are given in Table 1.1. Note that the kelvin unit uses no degree
symbol. The braces around a symbol like {M} mean “the dimension” of mass. All other
variables in fluid mechanics can be expressed in terms of {M}, {L}, {T}, and {®}. For
example, acceleration has the dimensions {L7 ~?}. The most crucial of these secondary
dimensions is force, which is directly related to mass, length, and time by Newton’s
second law. Force equals the time rate of change of momentum or, for constant mass,

F = ma (1.2)

From this we see that, dimensionally, {F} = {MLT 2}.

The use of a constant of proportionality in Newton’s law, Eq. (1.2), is avoided by
defining the force unit exactly in terms of the other basic units. In the SI system, the
basic units are newtons {F}, kilograms {M}, meters {L}, and seconds {7}. We define

1 newton of force = 1 N = 1 kg 1 m/s*

The newton is a relatively small force, about the weight of an apple (0.225 Ibf). In addi-
tion, the basic unit of temperature {®} in the SI system is the degree Kelvin, K. Use of
these SI units (N, kg, m, s, K) will require no conversion factors in our equations.

In the BG system also, a constant of proportionality in Eq. (1.2) is avoided by defin-
ing the force unit exactly in terms of the other basic units. In the BG system, the basic
units are pound-force {F}, slugs {M}, feet {L}, and seconds {7T}. We define

1 pound of force = 1 Ibf = 1 slug - 1 ft/s*

“If electromagnetic effects are important, a fifth primary dimension must be included, electric current
{1}, whose SI unit is the ampere (A).



Other Unit Systems

The Principle of
Dimensional Homogeneity

Table 1.2 Secondary Dimensions
in Fluid Mechanics
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One Ibf = 4.4482 N and approximates the weight of four apples. We will use the
abbreviation [bf for pound-force and /bm for pound-mass. The slug is a rather hefty
mass, equal to 32.174 1bm. The basic unit of temperature {®} in the BG system is the
degree Rankine, °R. Recall that a temperature difference 1 K = 1.8°R. Use of these
BG units (Ibf, slug, ft, s, °R) will require no conversion factors in our equations.

There are other unit systems still in use. At least one needs no proportionality constant:
the CGS system (dyne, gram, cm, s, K). However, CGS units are too small for most
applications (1 dyne = 10> N) and will not be used here.

In the USA, some still use the English Engineering system, (Ibf, Ibm, ft, s, °R), where
the basic mass unit is the pound of mass. Newton’s law (1.2) must be rewritten:

ma ft - Ibm
F 2 where g. = 32.174 Ibf - &2 (1.3)
The constant of proportionality, g., has both dimensions and a numerical value not
equal to 1.0. The present text uses only the SI and BG systems and will not solve prob-
lems or examples in the English Engineering system. Because Americans still use them,
a few problems in the text will be stated in truly awkward units: acres, gallons, ounces,
or miles. Your assignment will be to convert these and solve in the SI or BG systems.

In engineering and science, all equations must be dimensionally homogeneous, that
is, each additive term in an equation must have the same dimensions. For example,
take Bernoulli’s incompressible equation, to be studied and used throughout this text:

1
p+ EpV2 + pgZ = constant

Each and every term in this equation must have dimensions of pressure {ML™'T~?}.
We will examine the dimensional homogeneity of this equation in detail in Ex. 1.3.

A list of some important secondary variables in fluid mechanics, with dimensions
derived as combinations of the four primary dimensions, is given in Table 1.2. A more
complete list of conversion factors is given in App. C.

Secondary dimension SI unit BG unit Conversion factor
Area {L?} m? ft? 1 m? = 10.764 ft
Volume {L*} m’ ft® 1 m® = 35315 f®
Velocity {LT '} m/s ft/s 1 ft/s = 0.3048 m/s
Acceleration {LT 2} m/s? ft/s> 1 ft/s®> = 0.3048 m/s>
Pressure or stress {ML™'T 2} Pa = N/m’ Ibf/fe 1 1bf/f> = 47.88 Pa
Angular velocity {7~} 5! 5! Is'=1s"
Energy, heat, work {ML>T 2} J=N-m ft - Ibf 1 ft - Ibf = 1.3558 J
Power {ML*T %} W = J/s ft - 1bf/s 1 ft - Ibf/s = 1.3558 W
Density {ML ™3} kg/m® slugs/ft® 1 slug/f® = 515.4 kg/m?
Viscosity {ML™'T ™'} kg/(m - s) slugs/(ft + s) 1 slug/(ft - s) = 47.88 kg/(m - s)

Specific heat {L*T @'} m?/(s> - K) ft>/(s> - °R) 1 m%(s> - K) = 5.980 ft*/(s> - °R)
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Part (a)

Part (b)

Part (¢)

EXAMPLE 1.1

A body weighs 1000 Ibf when exposed to a standard earth gravity g = 32.174 ft/s*. (a) What
is its mass in kg? (b) What will the weight of this body be in N if it is exposed to the
moon’s standard acceleration g.,oon = 1.62 m/s>? (c) How fast will the body accelerate if
a net force of 400 Ibf is applied to it on the moon or on the earth?

Solution

We need to find the (a) mass; (b) weight on the moon; and (c) acceleration of this body.
This is a fairly simple example of conversion factors for differing unit systems. No prop-
erty data is needed. The example is too low-level for a sketch.

Newton’s law (1.2) holds with known weight and gravitational acceleration. Solve for m:

1000 1bf

F =W = 1000 Ibf = mg = 2.174 fu/s?), R
W = 1000 Ibf = mg = (m)(3 UsT), or m = s

= 31.08 slugs

Convert this to kilograms:
m = 31.08 slugs = (31.08 slugs)(14.5939 kg/slug) = 454 kg Ans. (a)

The mass of the body remains 454 kg regardless of its location. Equation (1.2) applies with
a new gravitational acceleration and hence a new weight:

F = Waoon = M8moon = (454 kg)(1.62 m/s*) = 735 N Ans. (b)

This part does not involve weight or gravity or location. It is simply an application of
Newton’s law with a known mass and known force:

F = 400 Ibf = ma = (31.08 slugs) a

Solve for

S L) 87E(0 3048E> = 3925 Ans. (0)
T 3108 slugs e\ ) T TR e

Comment (c): This acceleration would be the same on the earth or moon or anywhere.

Many data in the literature are reported in inconvenient or arcane units suitable

only to some industry or specialty or country. The engineer should convert these data
to the SI or BG system before using them. This requires the systematic application
of conversion factors, as in the following example.

EXAMPLE 1.2

Industries involved in viscosity measurement [27, 36] continue to use the CGS system of
units, since centimeters and grams yield convenient numbers for many fluids. The absolute
viscosity (w) unit is the poise, named after J. L. M. Poiseuille, a French physician who in
1840 performed pioneering experiments on water flow in pipes; 1 poise = 1 g/(cm-s). The
kinematic viscosity (v) unit is the sfokes, named after G. G. Stokes, a British physicist who



Part (a)

Part (b)
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in 1845 helped develop the basic partial differential equations of fluid momentum; 1 stokes
= 1 cm*s. Water at 20°C has u =~ 0.01 poise and also v =~ 0.01 stokes. Express these
results in (a) SI and (b) BG units.

Solution

* Approach: Systematically change grams to kg or slugs and change centimeters to meters
or feet.

e Property values: Given u = 0.01 g/(cm-s) and » = 0.01 cm?*s.

® Solution steps: (a) For conversion to SI units,

g g(1 kg/1000g) kg
=00l — =00l ————= 0.00l ——
a cm- s cm(0.01 m/cm)s m-s
2 %(0.01 m/cm)? 2
y = 0.01 S = g gp SOOTWEM”_ - 100001 ™ Ans. (@)
S S S

e For conversion to BG units

g g(1 kg/1000 g)(1 slug/14.5939 kg) slug
= 0.0l — = 0.01 = 0.0000209 —
H cm - s (0.01 m/cm)(1 £/0.3048 m)s ft-s
cm? cm?(0.01 m/cm)?(1 ft/0.3048 m)> ft?
v = 0.01 T = 0.01 S = 0.0000108 ? Ans. (b)

e Comments: This was a laborious conversion that could have been shortened by using
the direct viscosity conversion factors in App. C. For example, upg = usi/47.88.

We repeat our advice: Faced with data in unusual units, convert them immediately
to either SI or BG units because (1) it is more professional and (2) theoretical equa-
tions in fluid mechanics are dimensionally consistent and require no further conver-
sion factors when these two fundamental unit systems are used, as the following
example shows.

EXAMPLE 1.3

A useful theoretical equation for computing the relation between pressure, velocity, and alti-
tude in a steady flow of a nearly inviscid, nearly incompressible fluid with negligible heat
transfer and shaft work® is the Bernoulli relation, named after Daniel Bernoulli, who pub-
lished a hydrodynamics textbook in 1738:

po=p +1pV* + pgZ (1)

where p, = stagnation pressure

p = pressure in moving fluid
V = velocity
p = density
Z = altitude

g = gravitational acceleration

SThat’s an awful lot of assumptions, which need further study in Chap. 3.
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Consistent Units

Part (a)

Part (b)

Part (c)

(a) Show that Eq. (1) satisfies the principle of dimensional homogeneity, which states that all
additive terms in a physical equation must have the same dimensions. (b) Show that consis-
tent units result without additional conversion factors in SI units. (c) Repeat (b) for BG units.

Solution

We can express Eq. (1) dimensionally, using braces, by entering the dimensions of each
term from Table 1.2:

{ML™'T?} = {(ML™'T?} + {ML}{L’T?} + {ML}{LT *}{L}
= {ML™'T~2} for all terms Ans. (a)
Enter the SI units for each quantity from Table 1.2:
{(N/m?} = {N/m?} + {kg/m’}{m?/s*} + {kg/m’}{m/s*}{m}
= {(N/m?} + {kg/(m - s%)}
The right-hand side looks bad until we remember from Eq. (1.3) that 1 kg = 1 N - s*/m.

2
{ke/(m - )} = % = [N/m?%} Ans. (b)

Thus all terms in Bernoulli’s equation will have units of pascals, or newtons per square
meter, when SI units are used. No conversion factors are needed, which is true of all theo-
retical equations in fluid mechanics.

Introducing BG units for each term, we have
{(Ibf/ft?) = {Ibf/ft?) + {slugs/ft’} {ft?/s?} + {slugs/ft*} {ft/s?} {ft}
= {Ibf/ft*} + {slugs/(ft - s?)}
But, from Eq. (1.3), 1 slug = 1 1bf - s?/ft, so that
_ {Ibf - s¥ft}
{ft-s?}

All terms have the unit of pounds-force per square foot. No conversion factors are needed
in the BG system either.

{slugs/(ft - s>} = {Ibf/fi?} Ans. ()

There is still a tendency in English-speaking countries to use pound-force per square
inch as a pressure unit because the numbers are more manageable. For example, stan-
dard atmospheric pressure is 14.7 Ibf/in? = 2116 Ibf/ft* = 101,300 Pa. The pascal is a
small unit because the newton is less than 31 Ibf and a square meter is a very large area.

Note that not only must all (fluid) mechanics equations be dimensionally homogeneous,
one must also use consistent units; that is, each additive term must have the same units.
There is no trouble doing this with the SI and BG systems, as in Example 1.3, but
woe unto those who try to mix colloquial English units. For example, in Chap. 9, we
often use the assumption of steady adiabatic compressible gas flow:

h + 3V? = constant
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Table 1.3 Convenient Prefixes
for Engineering Units

Multiplicative
factor Prefi Symbol
102 tera T
10° giga G
10° mega M
10° kilo k
107 hecto h
10 deka da
107! deci d
1072 centi c
1073 milli m
107° micro "
107° nano n
10712 pico P
107" femto f
10718 atto a

Convenient Prefies in

Powers of 10
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where £ is the fluid enthalpy and V*/2 is its kinetic energy per unit mass. Colloquial
thermodynamic tables might list / in units of British thermal units per pound mass
(Btu/lb), whereas V is likely used in ft/s. It is completely erroneous to add Btu/Ib to
ft*/s>. The proper unit for / in this case is ft - Ibf/slug, which is identical to ft*/s.
The conversion factor is 1 Btu/lb = 25,040 /s> = 25,040 ft - 1bf/slug.

All theoretical equations in mechanics (and in other physical sciences) are dimension-
ally homogeneous; that is, each additive term in the equation has the same dimensions.
However, the reader should be warned that many empirical formulas in the engi-
neering literature, arising primarily from correlations of data, are dimensionally incon-
sistent. Their units cannot be reconciled simply, and some terms may contain hidden
variables. An example is the formula that pipe valve manufacturers cite for liquid vol-
ume flow rate Q (m?/s) through a partially open valve:

B Ap 172
0-c(52)

where Ap is the pressure drop across the valve and SG is the specific gravity of the
liquid (the ratio of its density to that of water). The quantity Cy is the valve fiw

coeffiient, which manufacturers tabulate in their valve brochures. Since SG is dimen-
sionless {1}, we see that this formula is totally inconsistent, with one side being a
flow rate {L*/T} and the other being the square root of a pressure drop {M"*/L'>T}.
It follows that Cy must have dimensions, and rather odd ones at that: {L*/M"?}.
Nor is the resolution of this discrepancy clear, although one hint is that the values of
Cy in the literature increase nearly as the square of the size of the valve. The pres-
entation of experimental data in homogeneous form is the subject of dimensional
analysis (Chap. 5). There we shall learn that a homogeneous form for the valve flow

relation is
Ap 172
Q = CdAopening<7>

where p is the liquid density and A the area of the valve opening. The discharge coef-
fiient C , is dimensionless and changes only moderately with valve size. Please
believe—until we establish the fact in Chap. 5—that this latter is a much better for-
mulation of the data.

Meanwhile, we conclude that dimensionally inconsistent equations, though they
occur in engineering practice, are misleading and vague and even dangerous, in the
sense that they are often misused outside their range of applicability.

Engineering results often are too small or too large for the common units, with too
many zeros one way or the other. For example, to write p = 114,000,000 Pa is long
and awkward. Using the prefix “M” to mean 10° we convert this to a concise
p = 114 MPa (megapascals). Similarly, # = 0.000000003 s is a proofreader’s night-
mare compared to the equivalent + = 3 ns (nanoseconds). Such prefixes are com-
mon and convenient, in both the SI and BG systems. A complete list is given in
Table 1.3.
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EXAMPLE 1.4

In 1890 Robert Manning, an Irish engineer, proposed the following empirical formula
for the average velocity V in uniform flow due to gravity down an open channel (BG
units):

149

V4 p R2/3sl/2 (l)

where R = hydraulic radius of channel (Chaps. 6 and 10)

S = channel slope (tangent of angle that bottom makes with horizontal)
n = Manning’s roughness factor (Chap. 10)

and 7 is a constant for a given surface condition for the walls and bottom of the channel.
(a) Is Manning’s formula dimensionally consistent? (b) Equation (1) is commonly taken to
be valid in BG units with n taken as dimensionless. Rewrite it in SI form.

Solution

e Assumption: The channel slope S is the tangent of an angle and is thus a dimensionless
ratio with the dimensional notation {1}—that is, not containing M, L, or T.
* Approach (a): Rewrite the dimensions of each term in Manning’s equation, using

el ]
w = {22 ey o (B - M2

n n
This formula is incompatible unless {1.49/n} = {L'3/T}. If n is dimensionless (and it is

never listed with units in textbooks), the number 1.49 must carry the dimensions of
{L'”IT}. Ans. (a)

Comment (a): Formulas whose numerical coefficients have units can be disastrous for
engineers working in a different system or another fluid. Manning’s formula, though pop-
ular, is inconsistent both dimensionally and physically and is valid only for water flow
with certain wall roughnesses. The effects of water viscosity and density are hidden in
the numerical value 1.49.

Approach (b): Part (a) showed that 1.49 has dimensions. If the formula is valid in BG
units, then it must equal 1.49 ft'*/s. By using the SI conversion for length, we obtain

(1.49 £t'3/)(0.3048 m/ft)'® = 1.00 m"?/s

Therefore Manning’s inconsistent formula changes form when converted to the SI system:

1.0
SIunits: V = — R¥3§'2 Ans. (b)
n

with R in meters and V in meters per second.

Comment (b): Actually, we misled you: This is the way Manning, a metric user, first
proposed the formula. It was later converted to BG units. Such dimensionally inconsis-
tent formulas are dangerous and should either be reanalyzed or treated as having very
limited application.
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In a given flow situation, the determination, by experiment or theory, of the proper-
ties of the fluid as a function of position and time is considered to be the solution to
the problem. In almost all cases, the emphasis is on the space—time distribution of the
fluid properties. One rarely keeps track of the actual fate of the specific fluid parti-
cles.® This treatment of properties as continuum-field functions distinguishes fluid
mechanics from solid mechanics, where we are more likely to be interested in the tra-
jectories of individual particles or systems.

There are two different points of view in analyzing problems in mechanics. The first
view, appropriate to fluid mechanics, is concerned with the field of flow and is called
the eulerian method of description. In the eulerian method we compute the pressure
field p(x, y, z, t) of the flow pattern, not the pressure changes p(f) that a particle expe-
riences as it moves through the field.

The second method, which follows an individual particle moving through the flow,
is called the lagrangian description. The lagrangian approach, which is more appro-
priate to solid mechanics, will not be treated in this book. However, certain numeri-
cal analyses of sharply bounded fluid flows, such as the motion of isolated fluid
droplets, are very conveniently computed in lagrangian coordinates [1].

Fluid dynamic measurements are also suited to the eulerian system. For example,
when a pressure probe is introduced into a laboratory flow, it is fixed at a specific
position (x, y, z). Its output thus contributes to the description of the eulerian pres-
sure field p(x, y, z, f). To simulate a lagrangian measurement, the probe would have
to move downstream at the fluid particle speeds; this is sometimes done in oceano-
graphic measurements, where flowmeters drift along with the prevailing currents.

The two different descriptions can be contrasted in the analysis of traffic flow along
a freeway. A certain length of freeway may be selected for study and called the field of
flow. Obviously, as time passes, various cars will enter and leave the field, and the iden-
tity of the specific cars within the field will constantly be changing. The traffic engi-
neer ignores specific cars and concentrates on their average velocity as a function of
time and position within the field, plus the flow rate or number of cars per hour pass-
ing a given section of the freeway. This engineer is using an eulerian description of the
traffic flow. Other investigators, such as the police or social scientists, may be interested
in the path or speed or destination of specific cars in the field. By following a specific
car as a function of time, they are using a lagrangian description of the flow.

Foremost among the properties of a flow is the velocity field V(x, y, z, f). In fact,
determining the velocity is often tantamount to solving a flow problem, since other
properties follow directly from the velocity field. Chapter 2 is devoted to the calcu-
lation of the pressure field once the velocity field is known. Books on heat transfer
(for example, Ref. 20) are largely devoted to finding the temperature field from known
velocity fields.

%0One example where fluid particle paths are important is in water quality analysis of the fate of con-
taminant discharges.
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The Acceleration Field

1.8 Thermodynamic Properties
of a Fluid

In general, velocity is a vector function of position and time and thus has three
components u, v, and w, each a scalar field in itself:

V(x,y,z,0) = iu(x,y, z, 1) + jv(x, y,z, 1) + kw(x, y, z, 1) (1.4)

The use of u, v, and w instead of the more logical component notation V,, V,, and V.
is the result of an almost unbreakable custom in fluid mechanics. Much of this text-
book, especially Chaps. 4, 7, 8, and 9, is concerned with finding the distribution of
the velocity vector V for a variety of practical flows.

The acceleration vector, a = dV/dt, occurs in Newton’s law for a fluid and thus is very
important. In order to follow a particle in the Eulerian frame of reference, the final result
for acceleration is nonlinear and quite complicated. Here we only give the formula:

dv oV A% A% A%
A= —=—=—aF — a9 V— aF W— (1.5)
dt at 0x ay 0z

where (u, v, w) are the velocity components from Eq. (1.4). We shall study this
formula in detail in Chap. 4. The last three terms in Eq. (1.5) are nonlinear products
and greatly complicate the analysis of general fluid motions, especially viscous
flows.

While the velocity field V is the most important fluid property, it interacts closely
with the thermodynamic properties of the fluid. We have already introduced into the
discussion the three most common such properties:

1. Pressure p

2. Density p

3. Temperature T

These three are constant companions of the velocity vector in flow analyses. Four

other intensive thermodynamic properties become important when work, heat, and
energy balances are treated (Chaps. 3 and 4):

4. Internal energy i

5. Enthalpy h = @ + plp

6. Entropy s

7. Specific heats ¢, and ¢,

In addition, friction and heat conduction effects are governed by the two so-called
transport properties:

8. Coefficient of viscosity u

9. Thermal conductivity k

All nine of these quantities are true thermodynamic properties that are determined by
the thermodynamic condition or state of the fluid. For example, for a single-phase
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substance such as water or oxygen, two basic properties such as pressure and
temperature are sufficient to fix the value of all the others:

p=pp.T) h=npT) p=upT)

and so on for every quantity in the list. Note that the specific volume, so important
in thermodynamic analyses, is omitted here in favor of its inverse, the density p.

Recall that thermodynamic properties describe the state of a system—that is, a
collection of matter of fixed identity that interacts with its surroundings. In most cases
here the system will be a small fluid element, and all properties will be assumed to
be continuum properties of the flow field: p = p(x, y, z, 1), and so on.

Recall also that thermodynamics is normally concerned with static systems,
whereas fluids are usually in variable motion with constantly changing properties.
Do the properties retain their meaning in a fluid flow that is technically not in
equilibrium? The answer is yes, from a statistical argument. In gases at normal pres-
sure (and even more so for liquids), an enormous number of molecular collisions
occur over a very short distance of the order of 1 um, so that a fluid subjected to
sudden changes rapidly adjusts itself toward equilibrium. We therefore assume that
all the thermodynamic properties just listed exist as point functions in a flowing fluid
and follow all the laws and state relations of ordinary equilibrium thermodynamics.
There are, of course, important nonequilibrium effects such as chemical and nuclear
reactions in flowing fluids, which are not treated in this text.

Pressure is the (compression) stress at a point in a static fluid (Fig. 1.3). Next to
velocity, the pressure p is the most dynamic variable in fluid mechanics. Differences
or gradients in pressure often drive a fluid flow, especially in ducts. In low-speed
flows, the actual magnitude of the pressure is often not important, unless it drops so
low as to cause vapor bubbles to form in a liquid. For convenience, we set many such
problem assignments at the level of 1 atm = 2116 Ibf/ft> = 101,300 Pa. High-speed
(compressible) gas flows (Chap. 9), however, are indeed sensitive to the magnitude
of pressure.

Temperature 7 is related to the internal energy level of a fluid. It may vary consider-
ably during high-speed flow of a gas (Chap. 9). Although engineers often use Celsius
or Fahrenheit scales for convenience, many applications in this text require absolute
(Kelvin or Rankine) temperature scales:

°R = °F + 459.69
K ="°C + 273.16

If temperature differences are strong, heat transfer may be important [20], but our
concern here is mainly with dynamic effects.

The density of a fluid, denoted by p (lowercase Greek rho), is its mass per unit volume.
Density is highly variable in gases and increases nearly proportionally to the pressure
level. Density in liquids is nearly constant; the density of water (about 1000 kg/m?)
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Specifi Weight

Specifi Gravity

Potential and Kinetic Energies

increases only 1 percent if the pressure is increased by a factor of 220. Thus most lig-
uid flows are treated analytically as nearly “incompressible.”

In general, liquids are about three orders of magnitude more dense than gases at
atmospheric pressure. The heaviest common liquid is mercury, and the lightest gas is
hydrogen. Compare their densities at 20°C and 1 atm:

Mercury: p = 13,580 kg/m® Hydrogen: p = 0.0838 kg/m®

They differ by a factor of 162,000! Thus the physical parameters in various liquid
and gas flows might vary considerably. The differences are often resolved by the use
of dimensional analysis (Chap. 5). Other fluid densities are listed in Tables A.3 and
A.4 (in App. A) and in Ref. 21.

The specifi weight of a fluid, denoted by y (lowercase Greek gamma), is its weight
per unit volume. Just as a mass has a weight W = mg, density and specific weight
are simply related by gravity:

Y= p8 (1.6)
The units of 7y are weight per unit volume, in Ibf/ft> or N/m’. In standard earth grav-
ity, g = 32.174 ft/s* = 9.807 m/s*. Thus, for example, the specific weights of air and
water at 20°C and 1 atm are approximately
Yar = (1.205 kg/m*)(9.807 m/s?) = 11.8 N/m® = 0.0752 Ibf/ft’
Yoater = (998 kg/m*)(9.807 m/s?) = 9790 N/m* = 62.4 Ibf/ft’

Specific weight is very useful in the hydrostatic pressure applications of Chap. 2.
Specific weights of other fluids are given in Tables A.3 and A.4.

Specifi gravity, denoted by SG, is the ratio of a fluid density to a standard reference
fluid, usually water at 4°C (for liquids) and air (for gases):

Pgas Pgas
SG,. =128 — _ ~eas
€ pyr 1205 kg/m® (1.7)

SGy .\ = Pliquid _ Pliquid
fiquid = ater 1000 kg/m®

For example, the specific gravity of mercury (Hg) is SGy, = 13,580/1000 ~ 13.6.
Engineers find these dimensionless ratios easier to remember than the actual numer-
ical values of density of a variety of fluids.

In thermostatics the only energy in a substance is that stored in a system by molec-
ular activity and molecular bonding forces. This is commonly denoted as internal
energy i. A commonly accepted adjustment to this static situation for fluid flow is to
add two more energy terms that arise from newtonian mechanics: potential energy
and kinetic energy.
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The potential energy equals the work required to move the system of mass m from
the origin to a position vector r = ix + jy + Kkz against a gravity field g. Its value
is —mg - r, or —g - r per unit mass. The kinetic energy equals the work required to
change the speed of the mass from zero to velocity V. Its value is %sz or %V2 per
unit mass. Then by common convention the total stored energy e per unit mass in
fluid mechanics is the sum of three terms:

e=0+3V +(—g-r1) (1.8)

Also, throughout this book we shall define z as upward, so that g = —gk and g - r =
—gz. Then Eq. (1.8) becomes

e=10+ 3V + g (1.9)

The molecular internal energy i is a function of 7 and p for the single-phase pure
substance, whereas the potential and kinetic energies are kinematic quantities.

Thermodynamic properties are found both theoretically and experimentally to be
related to each other by state relations that differ for each substance. As mentioned,
we shall confine ourselves here to single-phase pure substances, such as water in its
liquid phase. The second most common fluid, air, is a mixture of gases, but since the
mixture ratios remain nearly constant between 160 and 2200 K, in this temperature
range air can be considered to be a pure substance.

All gases at high temperatures and low pressures (relative to their critical point)
are in good agreement with the perfect-gas law

p = pRT R = ¢, — ¢, = gas constant (1.10)

where the specific heats ¢, and ¢, are defined in Egs. (1.14) and (1.15).

Since Eq. (1.10) is dimensionally consistent, R has the same dimensions as spe-
cific heat, {L*T 20"}, or velocity squared per temperature unit (kelvin or degree
Rankine). Each gas has its own constant R, equal to a universal constant A divided
by the molecular weight

Ry = (1.11)

where A = 49,700 ft-Ibf/(slugmol - °R) = 8314 J/(kmol - K). Most applications in
this book are for air, whose molecular weight is M = 28.97/mol:
49,700 ft - Ibf/(slugmol - °R) ft - Ibf ft> m’

air =1716———F= = 17165, = 287
28.97/mol slug - °R s™°R s”-K

(1.12)

Standard atmospheric pressure is 2116 Ibf/ft> = 2116 slug/(ft - s*), and standard
temperature is 60°F = 520°R. Thus standard air density is
3 2116 slug/(ft - s%)
Pair = T1716 £3/(s2 - °R)(520°R)

= 0.00237 slug/ft’ = 1.22 kg/m>  (1.13)

This is a nominal value suitable for problems. For other gases, see Table A.4.
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One proves in thermodynamics that Eq. (1.10) requires that the internal molecular
energy i of a perfect gas vary only with temperature: # = (7). Therefore the spe-
cific heat c, also varies only with temperature:

(aa) dii )
c, = _— = — =
Yo\or/), dr

or di = c(T)dT (1.14)
In like manner % and ¢, of a perfect gas also vary only with temperature:

h=ﬁ+%=ﬁ+RT=MD

on\ _ dh

Cf{—>:—=%a) (1.15)
oT),  dT
dh = ¢(T)dT

The ratio of specific heats of a perfect gas is an important dimensionless parameter
in compressible flow analysis (Chap. 9)

k=2 =Ky =1 (1.16)
As a first approximation in airflow analysis we commonly take c,, ¢,, and k to be
constant:

ky = 1.4

R
¢, = 7 = 4293 P/’ °R) = 718 m*/(s’ - K) (1.17)

c, = kk_—Rl ~ 6010 ft*/(s* - °R) = 1005 m*/(s* - K)

Actually, for all gases, c, and ¢, increase gradually with temperature, and k decreases
gradually. Experimental values of the specific-heat ratio for eight common gases are
shown in Fig. 1.5.

Many flow problems involve steam. Typical steam operating conditions are relatively
close to the critical point, so that the perfect-gas approximation is inaccurate. Since no
simple formulas apply accurately, steam properties are available both in EES (see
Sec. 1.12) and on a CD-ROM [23] and even on the Internet, as a MathPad Corp.
applet [24]. Meanwhile, the error of using the perfect-gas law can be moderate, as the
following example shows.

EXAMPLE 1.5

Estimate p and ¢, of steam at 100 Ibf/in® and 400°F, in English units, (@) by the perfect-gas
approximation and (b) by the ASME Steam Tables [23] or by EES.

Solution

* Approach (a)—the perfect-gas law: Although steam is not an ideal gas, we can estimate
these properties with moderate accuracy from Egs. (1.10) and (1.17). First convert pressure
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Atmospheric pressure

1.1 —

Fig. 1.5 Specific-heat ratio of eight 1.0 I I I I
common gases as a function of 0 1000 2000 3000 4000 5000
temperature. (Data from Ref. 22.) Temperature, °R

from 100 Ibf/in® to 14,400 Ibf/ft?, and use absolute temperature, (400°F + 460) = 860°R.
Then we need the gas constant for steam, in English units. From Table A.4, the molecular
weight of H,O is 18.02, whence

_ vy _ 49700 ft - bf/(slugmol 'R) _ . fit- Ibf
My o 18.02/mol slug °R

2f

Rsleam

Then the density estimate follows from the perfect-gas law, Eq. (1.10):

p 14,400 Ibf/ft* slug
~L ~ 0.00607—= Ans,
RT ~ [2758 ft - Ibf/(slug - °R)](860 °R) e ns. (4)

p

At 860°R, from Fig. 1.5, kyeam = c,/c, = 1.30. Then, from Eq. (1.17),

kR 1.3)(2758 ft - Ibf/(slug °R ft - Ibf
o)~ KR _ (@IS IfGIg R _ ) oo T
k—1 13 -1) slug °R

Ans. (a)

* Approach (b)—tables or software: One can either read the steam tables or program a
few lines in EES. In either case, the English units (psi, Btu, Ibm) are awkward when
applied to fluid mechanics formulas. Even so, when using EES, make sure that the



24 Chapter 1 Introduction

State Relations for Liquids

Variable Information menu specifies English units: psia and °F. EES statements for
evaluating density and specific heat of steam are, for these conditions,

Rho = DENSITY (steam, P=100,T = 400)
Cp = SPECHEAT (steam, P = 100, T = 400)
Note that the software is set up for psia and °F, without converting. EES returns the curve-
fit values
Rho =~ 0.2027 lbm/ft> ; Cp=0.5289 Btu/(lbm-F)

As just stated, Btu and lbm are extremely unwieldy when applied to mass, momentum,
and energy problems in fluid mechanics. Therefore, either convert to ft-1bf and slugs using
your own resources, or use the “Convert” function in EES, placing the old and new units
in single quote marks:

Rho2 = Rho*CONVERT (*1bm/ft*3’, ‘slug/£ft*3’)
Cp2 = Cp*CONVERT (‘Btu/lbm-F’, ‘ft*2/s*2-R’)
Note that (1) you multiply the old Rho and Cp by the CONVERT function; and (2) units

to the right of the division sign “/” in CONVERT are assumed to be in the denominator.
EES returns these results:

Rho2 = 0.00630 slug/ft’> Cp2 = 13,200 £t*/(s*-R) Ans. (b)

Comments: The steam tables would yield results quite close to EES. The perfect-gas
estimate of p is 4 percent low, and the estimate of ¢, is 9 percent low. The chief reason
for the discrepancy is that this temperature and pressure are rather close to the critical
point and saturation line of steam. At higher temperatures and lower pressures, say, 800°F
and 50 Ibf/in?, the perfect-gas law yields properties with an accuracy of about = 1 percent.

Once again let us warn that English units (psia, lbm Btu) are awkward and must be
converted in most fluid mechanics formulas. EES handles SI units nicely, with no con-
version factors needed.

The writer knows of no “perfect-liquid law” comparable to that for gases. Liquids are
nearly incompressible and have a single, reasonably constant specific heat. Thus an
idealized state relation for a liquid is

p = const ¢, = ¢, = const dh = ¢, dT (1.18)

Most of the flow problems in this book can be attacked with these simple assump-
tions. Water is normally taken to have a density of 998 kg/m> and a specific heat
c, = 4210 m?/(s® - K). The steam tables may be used if more accuracy is required.

The density of a liquid usually decreases slightly with temperature and increases
moderately with pressure. If we neglect the temperature effect, an empirical pressure—
density relation for a liquid is

n
L 3B+ 1)<ﬁ) - B (1.19)
a pa

where B and n are dimensionless parameters that vary slightly with temperature and
p. and p, are standard atmospheric values. Water can be fitted approximately to the
values B = 3000 and n = 7.
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Seawater is a variable mixture of water and salt and thus requires three thermo-
dynamic properties to define its state. These are normally taken as pressure, temper-
ature, and the salinity S, defined as the weight of the dissolved salt divided by the
weight of the mixture. The average salinity of seawater is 0.035, usually written as 35
parts per 1000, or 35 %e.. The average density of seawater is 2.00 slugs/ft® =~ 1030 kg/m”.
Strictly speaking, seawater has three specific heats, all approximately equal to the
value for pure water of 25,200 ft*/(s* - °R) = 4210 m?/(s> - K).

EXAMPLE 1.6

The pressure at the deepest part of the ocean is approximately 1100 atm. Estimate the den-
sity of seawater in slug/ft® at this pressure.

Solution

Equation (1.19) holds for either water or seawater. The ratio p/p, is given as 1100:

Y
1100 = (3001)(*) — 3000

a

p 4100)”7
L (22} = 1046
or 0 <3001

Assuming an average surface seawater density p, = 2.00 slugs/ft’, we compute
p =~ 1.046(2.00) = 2.09 slugs/ft’ Ans.

Even at these immense pressures, the density increase is less than 5 percent, which justifies
the treatment of a liquid flow as essentially incompressible.

The quantities such as pressure, temperature, and density discussed in the previous
section are primary thermodynamic variables characteristic of any system. Certain
secondary variables also characterize specific fluid mechanical behavior. The most
important of these is viscosity, which relates the local stresses in a moving fluid to
the strain rate of the fluid element.

Viscosity is a quantitative measure of a fluid’s resistance to flow. More specifically,
it determines the fluid strain rate that is generated by a given applied shear stress. We
can easily move through air, which has very low viscosity. Movement is more diffi-
cult in water, which has 50 times higher viscosity. Still more resistance is found in
SAE 30 oil, which is 300 times more viscous than water. Try to slide your hand
through glycerin, which is five times more viscous than SAE 30 oil, or blackstrap
molasses, another factor of five higher than glycerin. Fluids may have a vast range
of viscosities.

Consider a fluid element sheared in one plane by a single shear stress 7, as in
Fig. 1.6a. The shear strain angle 66 will continuously grow with time as long as
the stress 7 is maintained, the upper surface moving at speed du larger than the
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Fig. 1.6 Shear stress causes contin-
uous shear deformation in a fluid:
(a) a fluid element straining at a
rate 660/6t; (b) newtonian shear dis-
tribution in a shear layer near a
wall.
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lower. Such common fluids as water, oil, and air show a linear relation between
applied shear and resulting strain rate:

60
oo — 1.20
TS, (1.20)
From the geometry of Fig. 1.4a, we see that
ou ot
tan 80 = (1.21)
oy

In the limit of infinitesimal changes, this becomes a relation between shear strain rate
and velocity gradient:
do du
—=— 1.22
dt dy ( )
From Eq. (1.20), then, the applied shear is also proportional to the velocity gradient for
the common linear fluids. The constant of proportionality is the viscosity coefficient u:

do du
T= MW= Mdy

" (1.23)

Equation (1.23) is dimensionally consistent; therefore u has dimensions of stress—time:
(FTIL*} or {M/(LT)}. The BG unit is slugs per foot-second, and the SI unit is kilo-
grams per meter-second. The linear fluids that follow Eq. (1.23) are called newtonian
Aids, after Sir Isaac Newton, who first postulated this resistance law in 1687.

We do not really care about the strain angle 6(¢) in fluid mechanics, concentrating
instead on the velocity distribution u(y), as in Fig. 1.6b. We shall use Eq. (1.23) in
Chap. 4 to derive a differential equation for finding the velocity distribution u(y)—
and, more generally, V(x, y, z, f)—in a viscous fluid. Figure 1.6b illustrates a shear
layer, or boundary layer, near a solid wall. The shear stress is proportional to the slope
of the velocity profile and is greatest at the wall. Further, at the wall, the velocity u
is zero relative to the wall: This is called the no-slip condition and is characteristic
of all viscous fluid flows.



Table 1.4 Viscosity and Kinematic
Viscosity of Eight Fluids at 1 atm
and 20°C

The Reynolds Number
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My Ratio Ps v Ratio
Fluid kg/(m - s) /(Hy) kg/m? m?/s’ viv(Hg)

Hydrogen 9.0 E-6 1.0 0.084 1.05 E-4 910
Air 1.8 E-5 2.1 1.20 1.50 E-5 130
Gasoline 2.9 B4 33 680 4.22 E-7 3.7
Water 1.0 E-3 114 998 1.01 E-6 8.7
Ethyl alcohol 12 E-3 135 789 1.52 E-6 13
Mercury 1.5 E-3 170 13,550 1.16 E-7 1.0
SAE 30 oil 0.29 33,000 891 3.25 E-4 2,850
Glycerin 1.5 170,000 1,260 1.18 E-3 10,300

1 kg/(m - s) = 0.0209 slug/(ft - s); 1 m*s = 10.76 ft*/s.

The viscosity of newtonian fluids is a true thermodynamic property and varies with
temperature and pressure. At a given state (p, T) there is a vast range of values among
the common fluids. Table 1.4 lists the viscosity of eight fluids at standard pressure
and temperature. There is a variation of six orders of magnitude from hydrogen up
to glycerin. Thus there will be wide differences between fluids subjected to the same
applied stresses.

Generally speaking, the viscosity of a fluid increases only weakly with pressure.
For example, increasing p from 1 to 50 atm will increase u of air only 10 percent.
Temperature, however, has a strong effect, with u increasing with 7" for gases and
decreasing for liquids. Figure A.1 (in App. A) shows this temperature variation for
various common fluids. It is customary in most engineering work to neglect the pres-
sure variation.

The variation u(p, T) for a typical fluid is nicely shown by Fig. 1.7, from Ref. 25,
which normalizes the data with the critical-point state (w., p., T.). This behavior, called
the principle of corresponding states, is characteristic of all fluids, but the actual
numerical values are uncertain to =20 percent for any given fluid. For example, val-
ues of w(7) for air at latm, from Table A.2, fall about 8 percent low compared to the
“low-density limit” in Fig. 1.7.

Note in Fig. 1.7 that changes with temperature occur very rapidly near the critical
point. In general, critical-point measurements are extremely difficult and uncertain.

The primary parameter correlating the viscous behavior of all newtonian fluids is the
dimensionless Reynolds number:
VL VL
Re = P22 - 7= (1.24)
o v
where V and L are characteristic velocity and length scales of the flow. The second
form of Re illustrates that the ratio of w to p has its own name, the kinematic viscosity:
— (1.25)
p
It is called kinematic because the mass units cancel, leaving only the dimensions
{L*/T}.
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Fig. 1.7 Fluid viscosity nondimen-
sionalized by critical-point proper-
ties. This generalized chart is
characteristic of all fluids but is
accurate only to *£20 percent.
(From Ref. 25.)
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Generally, the first thing a fluids engineer should do is estimate the Reynolds num-
ber range of the flow under study. Very low Re indicates viscous creeping motion,
where inertia effects are negligible. Moderate Re implies a smoothly varying laminar
flow. High Re probably spells furbulent flow, which is slowly varying in the time-
mean but has superimposed strong random high-frequency fluctuations. Explicit
numerical values for low, moderate, and high Reynolds numbers cannot be stated here.
They depend on flow geometry and will be discussed in Chaps. 5 through 7.

Table 1.4 also lists values of v for the same eight fluids. The pecking order changes
considerably, and mercury, the heaviest, has the smallest viscosity relative to its own
weight. All gases have high v relative to thin liquids such as gasoline, water, and alco-
hol. Oil and glycerin still have the highest v, but the ratio is smaller. For given val-
ues of V and L in a flow, these fluids exhibit a spread of four orders of magnitude in
the Reynolds number.

A classic problem is the flow induced between a fixed lower plate and an upper plate
moving steadily at velocity V, as shown in Fig. 1.8. The clearance between plates is



Fig. 1.8 Viscous flow induced by
relative motion between two paral-
lel plates.
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Moving

u=Vv plate:
— u=V

 Viscous
- fluid |

X
Fixed plate

h, and the fluid is newtonian and does not slip at either plate. If the plates are large,
this steady shearing motion will set up a velocity distribution u(y), as shown, with
v = w = 0. The fluid acceleration is zero everywhere.

With zero acceleration and assuming no pressure variation in the flow direction,
you should show that a force balance on a small fluid element leads to the result that
the shear stress is constant throughout the fluid. Then Eq. (1.23) becomes

du 7 .
— = — = cons
dy R
which we can integrate to obtain
u=a+ by

The velocity distribution is linear, as shown in Fig. 1.8, and the constants a and b can
be evaluated from the no-slip condition at the upper and lower walls:
{O=a+b(0) aty =0
u =
V=ua + b(h) aty = h
Hence @ = 0 and b = V/h. Then the velocity profile between the plates is given by

Y
= V= 1.26
w=vy (1.26)

as indicated in Fig. 1.8. Turbulent flow (Chap. 6) does not have this shape.
Although viscosity has a profound effect on fluid motion, the actual viscous stresses
are quite small in magnitude even for oils, as shown in the following example.

EXAMPLE 1.7

Suppose that the fluid being sheared in Fig. 1.8 is SAE 30 oil at 20°C. Compute the shear
stress in the oil if V. = 3 m/s and &7 = 2 cm.

Solution

o System sketch: This is shown earlier in Fig. 1.8.
o Assumptions: Linear velocity profile, laminar newtonian fluid, no slip at either plate surface.
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Variation of Viscosity
with Temperature

Nonnewtonian Fluids

e Approach: The analysis of Fig. 1.8 leads to Eq. (1.26) for laminar flow.
e Property values: From Table 1.4 for SAE 30 oil, the oil viscosity u = 0.29 kg/(m-s).
* Solution steps: In Eq. (1.26), the only unknown is the fluid shear stress:

1% k 3m/ kg - m/s>
T=uz=(o.z g>( D _ ypskemis
m-s/ (0.02 m)

N
=435—7 =~ 44 Pa Ans.
m

o+ Comments: Note the unit identities, 1 kg-m/s> = 1 N and 1 N/m*> = 1 Pa. Although oil
is very viscous, this shear stress is modest, about 2400 times less than atmospheric pres-
sure. Viscous stresses in gases and thin (watery) liquids are even smaller.

Temperature has a strong effect and pressure a moderate effect on viscosity. The vis-
cosity of gases and most liquids increases slowly with pressure. Water is anomalous
in showing a very slight decrease below 30°C. Since the change in viscosity is only
a few percent up to 100 atm, we shall neglect pressure effects in this book.

Gas viscosity increases with temperature. Two common approximations are the
power law and the Sutherland law:

T n
(F) power law
£ Mo (1.27)

Ko (TITo)*(Ty + S)
T+ S

Sutherland law

where g is a known viscosity at a known absolute temperature 7, (usually 273 K).
The constants n and S are fit to the data, and both formulas are adequate over a wide
range of temperatures. For air, n = 0.7 and S = 110 K = 199°R. Other values are
given in Ref. 26.

Liquid viscosity decreases with temperature and is roughly exponential, u = ae ",
but a better fit is the empirical result that In w is quadratic in 1/7, where T is absolute

temperature:
o Ty To)2
In—=a+bl—|+c|l—=
nMo a (T) c( T (1.28)
For water, with T, = 273.16 K, uo = 0.001792 kg/(m - s), suggested values are
a=—194,b = —4.80, and ¢ = 6.74, with accuracy about =1 percent. The viscosity

of water is tabulated in Table A.1. Curve-fit viscosity formulas for 355 organic liquids
are given by Yaws et al. [27]. For further viscosity data, see Refs. 21, 28 and 29.

Fluids that do not follow the linear law of Eq. (1.23) are called nonnewtonian and are
treated in books on rheology [16]. Figure 1.9a compares some examples to a newtonian
fluid. For the nonlinear curves, the slope at any point is called the apparent viscosity.

Dilatant. This fluid is shear-thickening, increasing its resistance with increasing strain
rate. Examples are suspensions of corn starch or sand in water. The classic case is
quicksand, which stiffens up if one thrashes about.



Fig. 1.9 Rheological behavior
of various viscous materials:
(a) stress versus strain rate;
(b) effect of time on applied
stress.

Surface Tension
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Pseudoplastic. A shear-thinning fluid is less resistant at higher strain rates. A very
strong thinning is called plastic. Some of the many examples are polymer solutions,
colloidal suspensions, paper pulp in water, latex paint, blood plasma, syrup, and
molasses. The classic case is paint, which is thick when poured but thin when brushed
at a high strain rate.

Bingham plastic. The limiting case of a plastic substance is one that requires a finite
yield stress before it begins to flow. Figure 1.9a shows yielding followed by linear
behavior, but nonlinear flow can also occur. Some examples are clay suspensions,
drilling mud, toothpaste, mayonnaise, chocolate, and mustard. The classic case is cat-
sup, which will not come out of the bottle until you stress it by shaking.

A further complication of nonnewtonian behavior is the transient effect shown in
Fig. 1.9b. Some fluids require a gradually increasing shear stress to maintain a
constant strain rate and are called rheopectic. The opposite case of a fluid that thins
out with time and requires decreasing stress is termed thixotropic. We neglect non-
newtonian effects in this book; see Ref. 16 for further study.

A liquid, being unable to expand freely, will form an interface with a second liquid
or gas. The physical chemistry of such interfacial surfaces is quite complex, and whole
textbooks are devoted to this specialty [30]. Molecules deep within the liquid repel
each other because of their close packing. Molecules at the surface are less dense and
attract each other. Since half of their neighbors are missing, the mechanical effect is
that the surface is in tension. We can account adequately for surface effects in fluid
mechanics with the concept of surface tension.

If a cut of length dL is made in an interfacial surface, equal and opposite forces
of magnitude Y dL are exposed normal to the cut and parallel to the surface, where
Y is called the coeffiient of surface tension . The dimensions of Y are {F/L}, with SI
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Fig. 1.10 Surface tension of a
clean air—water interface. Data
from Table A.5.
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units of newtons per meter and BG units of pounds-force per foot. An alternate
concept is to open up the cut to an area dA; this requires work to be done of amount
Y dA. Thus the coefficient Y can also be regarded as the surface energy per unit area
of the interface, in N - m/m? or ft - 1bf/ft.

The two most common interfaces are water—air and mercury-air. For a clean sur-
face at 20°C = 68°F, the measured surface tension is

B {0.0050 Ibf/ft = 0.073 N/m  air—water

. (1.29)
0.033 Ibf/ft = 0.48 N/m  air—mercury

These are design values and can change considerably if the surface contains contam-
inants like detergents or slicks. Generally Y decreases with liquid temperature and is
zero at the critical point. Values of Y for water are given in Fig. 1.10 and Table A.5.

If the interface is curved, a mechanical balance shows that there is a pressure
difference across the interface, the pressure being higher on the concave side, as illus-
trated in Fig. 1.11. In Fig. 1.11aq, the pressure increase in the interior of a liquid cylin-
der is balanced by two surface-tension forces:

2RL Ap = 2YL
Y
Ap = — 1.
or P = (1.30)

We are not considering the weight of the liquid in this calculation. In Fig. 1.115, the
pressure increase in the interior of a spherical droplet balances a ring of surface-
tension force:

mR* Ap = 2@RY

2Y
Ap = — 1.31
or » =5 (1.31)

We can use this result to predict the pressure increase inside a soap bubble, which
has two interfaces with air, an inner and outer surface of nearly the same radius R:

4Y

Apbubble =2 Apdroplet = ? (132)
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Fig. 1.11 Pressure change across a curved interface due to surface tension: (@) interior of a liquid cylinder; (b) interior of a spherical

droplet; (c¢) general curved interface.

Fig. 1.12 Contact-angle effects
at liquid—gas—solid interface. If
0 < 90°, the liquid “wets” the

solid; if > 90°, the liquid is

nonwetting.

Figure 1.11c shows the general case of an arbitrarily curved interface whose princi-
pal radii of curvature are R; and R,. A force balance normal to the surface will show
that the pressure increase on the concave side is

Ap=YR "+ R, (1.33)

Equations (1.30) to (1.32) can all be derived from this general relation; for example,
in Eq. (1.30), R, = R and R, = .

A second important surface effect is the contact angle 6, which appears when a
liquid interface intersects with a solid surface, as in Fig. 1.12. The force balance
would then involve both Y and 6. If the contact angle is less than 90°, the liquid is
said to wet the solid; if 6 > 90°, the liquid is termed nonwetting. For example, water
wets soap but does not wet wax. Water is extremely wetting to a clean glass sur-
face, with § = 0°. Like Y, the contact angle 6 is sensitive to the actual physico-
chemical conditions of the solid-liquid interface. For a clean mercury—air—glass
interface, 6 = 130°.

Liquid

\ Nonwetting
N\ P

Solid
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Vapor Pressure

Example 1.8 illustrates how surface tension causes a fluid interface to rise or fall

in a capillary tube.

EXAMPLE 1.8

Derive an expression for the change in height 4 in a circular tube of a liquid with surface
tension Y and contact angle 6, as in Fig. E1.8.

Solution

The vertical component of the ring surface-tension force at the interface in the tube must
balance the weight of the column of fluid of height A:

27RY cos § = ymR*h
Solving for A, we have the desired result:

2Y
h— cos 0
YR

Ans.

Thus the capillary height increases inversely with tube radius R and is positive if § < 90°
(wetting liquid) and negative (capillary depression) if 6 > 90°.

Suppose that R = 1 mm. Then the capillary rise for a water—air—glass interface, 6 = 0°,
Y = 0.073 N/m, and p = 1000 kg/m® is

3 2(0.073 N/m)(cos 0°)
(1000 kg/m*)(9.81 m/s%)(0.001 m)

= 0.015 (N - s?)/kg = 0.015m = 1.5 cm

For a mercury—air—glass interface, with § = 130°, Y = 0.48 N/m, and p = 13,600 kg/m3,
the capillary rise is

2(0.48)(cos 130°)
- = 00046 m = —046
13.600(9.81)(0.001) m em

When a small-diameter tube is used to make pressure measurements (Chap. 2), these cap-
illary effects must be corrected for.

Vapor pressure is the pressure at which a liquid boils and is in equilibrium with its
own vapor. For example, the vapor pressure of water at 68°F is 49 Ibf/ft*, while that
of mercury is only 0.0035 Ibf/ft*. If the liquid pressure is greater than the vapor pres-
sure, the only exchange between liquid and vapor is evaporation at the interface. If,
however, the liquid pressure falls below the vapor pressure, vapor bubbles begin to
appear in the liquid. If water is heated to 212°F, its vapor pressure rises to 2116 Ibf/ft?,
and thus water at normal atmospheric pressure will boil. When the liquid pressure is
dropped below the vapor pressure due to a flow phenomenon, we call the process
cavitation. If water is accelerated from rest to about 50 ft/s, its pressure drops by
about 15 Ibf/in%, or 1 atm. This can cause cavitation [31].

The dimensionless parameter describing flow-induced boiling is the cavitation number

Ca=La—Pv (1.34)
PV
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100

Py, kPa

Fig. 1.13 Vapor pressure of water. 0 20 40 60 80 100
Data from Table A.5. T,°C

where p, = ambient pressure
p, = vapor pressure
V = characteristic flow velocity
p = fluid density

Depending on the geometry, a given flow has a critical value of Ca below which the
flow will begin to cavitate. Values of surface tension and vapor pressure of water are
given in Table A.5. The vapor pressure of water is plotted in Fig. 1.13.

Figure 1.14a shows cavitation bubbles being formed on the low-pressure surfaces
of a marine propeller. When these bubbles move into a higher-pressure region, they
collapse implosively. Cavitation collapse can rapidly spall and erode metallic surfaces
and eventually destroy them, as shown in Fig. 1.14b.

EXAMPLE 1.9

A certain torpedo, moving in fresh water at 10°C, has a minimum-pressure point given by
the formula

Pmin = Po — 0.35 pV? (1)

where py = 115 kPa, p is the water density, and V is the torpedo velocity. Estimate the veloc-
ity at which cavitation bubbles will form on the torpedo. The constant 0.35 is dimensionless.

Solution

* Assumption: Cavitation bubbles form when the minimum pressure equals the vapor
pressure p,.

* Approach: Solve Eq. (1) above, which is related to the Bernoulli equation from Example
1.3, for the velocity when p,;, = p,. Use SI units (m, N, kg, s).

* Property values: At 10°C, read Table A.l1 for p = 1000 kg/m3 and Table A.5 for
p, = 1.227 kPa.
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Fig. 1.14 Two aspects of cavitation
bubble formation in liquid flows:
(a) Beauty: spiral bubble sheets
form from the surface of a marine
propeller (courtesy of the Garfild
Thomas Water Tunnel, Pennsylvania
State University); (b) ugliness:
collapsing bubbles erode a propeller
surface (courtesy of Thomas

T. Huang, David Taylor Research
Center).




No-Slip and No-Temperature-
Jump Conditions

Fig. 1.15 The no-slip condition in
water flow past a thin fixed plate.
The upper flow is turbulent; the
lower flow is laminar. The velocity
profile is made visible by a line of
hydrogen bubbles discharged from
the wire across the flow. (National
Committee for Fluid Mechanics
Films, Education Development
Center, Inc, ©1972)
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* Solution steps: Insert the known data into Eq. (1) and solve for the velocity, using SI units:

k
Pmin = Py = 1227 Pa = 115,000 Pa — 0.35(1000 %)Vz, with V in m/s
m

(115,000 — 1227)

2
2 __ = g = =
Solve V' 0.35(1000) 325 2 or V= V325=18.0m/s Ans.

* Comments: Note that the use of SI units requires no conversion factors, as discussed in
Example 1.3b. Pressures must be entered in pascals, not kilopascals.

When a fluid flow is bounded by a solid surface, molecular interactions cause the fluid
in contact with the surface to seek momentum and energy equilibrium with that surface.
All liquids essentially are in equilibrium with the surfaces they contact. All gases are,
too, except under the most rarefied conditions [18]. Excluding rarefied gases, then, all flu-
ids at a point of contact with a solid take on the velocity and temperature of that surface:

Viia = Vwan Ttia = Twan (1.35)

These are called the no-slip and no-temperature-jump conditions, respectively. They
serve as boundary conditions for analysis of fluid flow past a solid surface. Figure
1.15 illustrates the no-slip condition for water flow past the top and bottom surfaces
of a fixed thin plate. The flow past the upper surface is disorderly, or turbulent, while
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the lower surface flow is smooth, or laminar.” In both cases there is clearly no slip at
the wall, where the water takes on the zero velocity of the fixed plate. The velocity
profile is made visible by the discharge of a line of hydrogen bubbles from the wire
shown stretched across the flow.

To decrease the mathematical difficulty, the no-slip condition is partially relaxed
in the analysis of inviscid flow (Chap. 8). The flow is allowed to “slip” past the sur-
face but not to permeate through the surface

Vnormal(ﬂUid) = Vnormal(SOIid) (136)

while the tangential velocity V;, is allowed to be independent of the wall. The analy-
sis is much simpler, but the flow patterns are highly idealized.

For high-viscosity newtonian fluids, the linear velocity assumption and the no-slip
conditions can yield some sophisticated approximate analyses for two- and three-
dimensional viscous flows. The following example, for a type of rotating-disk
viscometer, will illustrate.

EXAMPLE 1.10

A oil film of viscosity u and thickness 7 << R lies between a solid wall and a circular disk,
as in Fig. E1.10. The disk is rotated steadily at angular velocity (). Noting that both veloc-
ity and shear stress vary with radius r, derive a formula for the torque M required to rotate
the disk. Neglect air drag.

Solution

o System sketch: Figure E1.10 shows a side view (a) and a top view (b) of the system.

Oil film [ > o (=
thickness r=R
K : : dM = (T dA)r
1 I
L l
| |
Fixed wall dA =2mr dr
(a) )
E1.10

e Assumptions: Linear velocity profile, laminar flow, no-slip, local shear stress given by
Eq. (1.23).

e Approach: Estimate the shear stress on a circular strip of width dr and area dA = 2nr dr
in Fig. E1.10b, then find the moment dM about the origin caused by this shear stress. Inte-
grate over the entire disk to find the total moment M.

"Laminar and turbulent flows are studied in Chaps. 6 and 7.



Slip Flow in Gases

Speed of Sound
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* Property values: Constant oil viscosity w. In this steady flow, oil density is not relevant.

* Solution steps: At radius r, the velocity in the oil is tangential, varying from zero at the
fixed wall (no-slip) to u = Qr at the disk surface (also no-slip). The shear stress at this
position is thus

_ du_ Qr
T Ry TR

This shear stress is everywhere perpendicular to the radius from the origin (see Fig. E1.105).
Then the total moment about the disk origin, caused by shearing this circular strip, can be
found and integrated:

dM = (1)(dA)r = (MT(M)(Z’ITV dryr, M = JdM =

e Comments: This is a simplified engineering analysis, which neglects possible edge
effects, air drag on the top of the disk, and the turbulence that might ensue if the disk
rotates too fast.

The “free slip” boundary condition, Eq. (1.36), is an unrealistic mathematical artifice
to enable inviscid-flow solutions. However, actual, realistic wall slip occurs in rarefied
gases, where there are too few molecules to establish momentum equilibrium with
the wall. In 1879, the physicist James Clerk Maxwell used the kinetic theory of gases
to predict a slip velocity at the wall:

ou
8uwa]l =~ €a_

[war (1.37)
y
where € is the mean free path of the gas, and u and x are along the wall. If € is very
small compared to the lateral scale L of the flow, the Knudsen number, Kn = €/L, is

small, and the slip velocity is near zero. We will assign a few slip problems, but the
details of rarefied gas flow are left for further reading in Refs. 18 and 52.

In gas flow, one must be aware of compressibility effects (significant density
changes caused by the flow). We shall see in Sec. 4.2 and in Chap. 9 that com-
pressibility becomes important when the flow velocity reaches a significant fraction
of the speed of sound of the fluid. The speed of sound a of a fluid is the rate of
propagation of small-disturbance pressure pulses (“sound waves”) through the fluid.
In Chap. 9 we shall show, from momentum and thermodynamic arguments, that the
speed of sound is defined by a pressure-density derivative proportional to the isen-
tropic bulk modulus:

B 9 9
o)),
p aps apT Cy

)
where B = isentropic bulk modulus = p (a—p) .
pP/s
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1.10 Basic Flow Analysis
Techniques

This is true for either a liquid or a gas, but it is for gases that the problem of com-
pressibility occurs. For an ideal gas, Eq. (1.10), we obtain the simple formula

Gideal gas = (kRT)"? (1.38)

where R is the gas constant, Eq. (1.11), and 7 the absolute temperature. For example,
for air at 20°C, a = {(1.40)[287 m*/(s* - K)](293 K)}"? = 343 m/s (1126 ft/s = 768
mi/h). If, in this case, the air velocity reaches a significant fraction of a, say, 100 m/s,
then we must account for compressibility effects (Chap. 9). Another way to state this
is to account for compressibility when the Mach number Ma = V/a of the flow reaches
about 0.3.

The speed of sound of water is tabulated in Table A.5. For near perfect gases, like
air, the speed of sound is simply calculated by Eq. (1.38). Many liquids have their
bulk modulus listed in Table A.3. Note, however, as discussed in Ref. 51, even a very
small amount of dissolved gas in a liquid can reduce the mixture speed of sound by
up to 80 percent.

EXAMPLE 1.11

A commercial airplane flies at 540 mi/h at a standard altitude of 30,000 ft. What is its Mach
number?

Solution

e Approach: Find the “standard” speed of sound; divide it into the velocity, using proper
units.

e Property values: From Table A.6, at 30,000 ft (9144 m), a = 303 m/s. Check this
against the standard temperature, estimated from the table to be 229 K. From Eq. (1.38)
for air,

a = [kRy;T1"* = [1.4(287)(229)]"* =~ 303 m/s.
 Solution steps: Convert the airplane velocity to m/s:
V = (540 mi/h)[0.44704 m/s/(mi/h)] =~ 241 m/s.
Then the Mach number is given by
Ma = V/a = (241 m/s)/(303 m/s) = 0.80 Ans.

e Comments: This value, Ma = 0.80, is typical of present-day commercial airliners.

There are three basic ways to attack a fluid flow problem. They are equally impor-
tant for a student learning the subject, and this book tries to give adequate coverage
to each method:

1. Control-volume, or integral analysis (Chap. 3).
2. Infinitesimal system, or differential analysis (Chap. 4).
3. Experimental study, or dimensional analysis (Chap. 5).
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In all cases, the flow must satisfy the three basic laws of mechanics plus a thermo-
dynamic state relation and associated boundary conditions:

Conservation of mass (continuity).

Linear momentum (Newton’s second law).

First law of thermodynamics (conservation of energy).
A state relation like p = p(p, T).

A

Appropriate boundary conditions at solid surfaces, interfaces, inlets, and exits.

In integral and differential analyses, these five relations are modeled mathematically
and solved by computational methods. In an experimental study, the fluid itself per-
forms this task without the use of any mathematics. In other words, these laws are
believed to be fundamental to physics, and no fluid flow is known to violate them.

Fluid mechanics is a highly visual subject. The patterns of flow can be visualized in
a dozen different ways, and you can view these sketches or photographs and learn a
great deal qualitatively and often quantitatively about the flow.

Four basic types of line patterns are used to visualize flows:

A streamline is a line everywhere tangent to the velocity vector at a given instant.
A pathline is the actual path traversed by a given fluid particle.

3. A streakline is the locus of particles that have earlier passed through a
prescribed point.

4. A timeline is a set of fluid particles that form a line at a given instant.

The streamline is convenient to calculate mathematically, while the other three are
easier to generate experimentally. Note that a streamline and a timeline are instan-
taneous lines, while the pathline and the streakline are generated by the passage
of time. The velocity profile shown in Fig. 1.15 is really a timeline generated ear-
lier by a single discharge of bubbles from the wire. A pathline can be found by
a time exposure of a single marked particle moving through the flow. Streamlines
are difficult to generate experimentally in unsteady flow unless one marks a great
many particles and notes their direction of motion during a very short time inter-
val [32]. In steady flow, where velocity varies only with position, the situation
simplifies greatly:

Streamlines, pathlines, and streaklines are identical in steady flow.

In fluid mechanics the most common mathematical result for visualization purposes
is the streamline pattern. Figure 1.16a shows a typical set of streamlines, and
Fig. 1.16b shows a closed pattern called a streamtube. By definition the fluid within
a streamtube is confined there because it cannot cross the streamlines; thus the stream-
tube walls need not be solid but may be fluid surfaces.

Figure 1.17 shows an arbitrary velocity vector. If the elemental arc length dr of a
streamline is to be parallel to V, their respective components must be in proportion:

dx dy dz dr

Streamline: — =

u v o w Vv (1.39)
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Fig. 1.16 The most common
method of flow-pattern
presentation: (a) Streamlines are
everywhere tangent to the local
velocity vector; (b) a streamtube is
formed by a closed collection of
streamlines.

Fig. 1.17 Geometric relations for
defining a streamline.

f
T~

(a)

No flow across \
streamtube walls

Individual
streamline

(b)

If the velocities (1, v, w) are known functions of position and time, Eq. (1.39) can be
integrated to find the streamline passing through the initial point (xo, yo, 2o, o). The
method is straightforward for steady flows (Example 1.12) but may be laborious for

unsteady flow.

The pathline, or displacement of a particle, is defined by integration of the veloc-

ity components:

Pathline: x = Ju dt y = Jv dt 7= Jw dt (1.40)

Given (u, v, w) as known functions of position and time, the integration is begun at
a specified initial position (xq, Yo, zo, fp)- Again the integration may be laborious.

Streaklines, easily generated experimentally with smoke, dye, or bubble releases,
are very difficult to compute analytically. See Ref. 33 for mathematical details.




Fig. E1.12 Streamlines for the
velocity distribution given by
Eq. (1), for K > 0.
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EXAMPLE 1.12

Given the steady two-dimensional velocity distribution
u = Kx v = —Ky w=20 (1)

where K is a positive constant, compute and plot the streamlines of the flow, including direc-
tions, and give some possible interpretations of the pattern.

Solution

Since time does not appear explicitly in Eq. (1), the motion is steady, so that streamlines, path-
lines, and streaklines will coincide. Since w = 0 everywhere, the motion is two-dimensional,
in the xy plane. The streamlines can be computed by substituting the expressions for u and
v into Eq. (1.39):

@i _ @
Kx Ky
o=
or — ==
X y
Integrating, we obtain In x = —Iny + In C, or
xy = C Ans. (2)

This is the general expression for the streamlines, which are hyperbolas. The complete pattern
is plotted in Fig. E1.12 by assigning various values to the constant C. The arrowheads can be
determined only by returning to Eq. (1) to ascertain the velocity component directions, assum-
ing K is positive. For example, in the upper right quadrant (x > 0, y > 0), u is positive and v
is negative; hence the flow moves down and to the right, establishing the arrowheads as shown.

Note that the streamline pattern is entirely independent of constant K. It could represent
the impingement of two opposing streams, or the upper half could simulate the flow of a

y
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Flow Visualization

single downward stream against a flat wall. Taken in isolation, the upper right quadrant is
similar to the flow in a 90° corner. This is definitely a realistic flow pattern and is discussed
again in Chap. 8.

Finally note the peculiarity that the two streamlines (C = 0) have opposite directions
and intersect. This is possible only at a point where u = v = w = 0, which occurs at the
origin in this case. Such a point of zero velocity is called a stagnation point.

Clever experimentation can produce revealing images of a fluid flow pattern, as shown
earlier in Figs. 1.14a and 1.15. For example, streaklines are produced by the contin-
uous release of marked particles (dye, smoke, or bubbles) from a given point. If the
flow is steady, the streaklines will be identical to the streamlines and pathlines of the
flow.

Some methods of flow visualization include the following [34-36]:

Dye, smoke, or bubble discharges.
Surface powder or flakes on liquid flows.
Floating or neutral-density particles.

Ll

Optical techniques that detect density changes in gas flows: shadowgraph,
schlieren, and interferometer.

Tufts of yarn attached to boundary surfaces.
Evaporative coatings on boundary surfaces.
Luminescent fluids, additives, or bioluminescence.

® N

Particle image velocimetry (PIV).

Figures 1.14a and 1.15 were both visualized by bubble releases. Another example is
the use of particles in Fig. 1.18 to visualize a flow negotiating a 180° turn in a ser-
pentine channel [42].

Figure 1.18a is at a low, laminar Reynolds number of 1000. The flow is steady,
and the particles form streaklines showing that the flow cannot make the sharp turn
without separating away from the bottom wall.

Figure 1.18b is at a higher, turbulent Reynolds number of 30,000. The flow is
unsteady, and the streaklines would be chaotic and smeared, unsuitable for visualiza-
tion. The image is thus produced by the new technique of particle image velocime-
try [37]. In PIV, hundreds of particles are tagged and photographed at two closely
spaced times. Particle movements thus indicate local velocity vectors. These hundreds
of vectors are then smoothed by repeated computer operations until the time-mean
flow pattern in Fig. 1.18b is achieved. Modern flow experiments and numerical mod-
els use computers extensively to create their visualizations, as described in the text
by Yang [38].

Mathematical details of streamline/streakline/pathline analysis are given in Ref. 33.
References 39-41 are beautiful albums of flow photographs. References 34-36 are
monographs on flow visualization techniques.

Fluid mechanics is a marvelous subject for visualization, not just for still (steady)
patterns, but also for moving (unsteady) motion studies. An outstanding list of avail-
able flow movies and videotapes is given by Carr and Young [43].



Fig. 1.18. Two visualizations of
flow making a 180° turn in a
serpentine channel: (a) particle
streaklines at a Reynolds number
of 1000; (b) time-mean particle
image velocimetry (PIV) at a
turbulent Reynolds number of
30,000 (From Ref. 42, by permis-
sion of the American Society of
Mechanical Engineers.)

1.12 The Engineering Equation Solver

45



46 Chapter 1 Introduction

1.12 The Engineering
Equation Solver

1.13 Uncertainty in
Experimental Data

Most of the examples and exercises in this text are amenable to direct calculation with-
out guessing or iteration or looping. Until recently, only such direct problem assignments,
whether “plug-and-chug” or more subtle, were appropriate for undergraduate engineer-
ing courses. However, the introduction of computer software solvers makes almost any
set of algebraic relations viable for analysis and solution. The solver recommended here
is the Engineering Equation Solver (EES) developed by Klein and Beckman [44].

Any software solver should handle a purely mathematical set of relations, such as
the one posed in Ref. 44: X In (X) = ¥*, X"> = 1/Y. Submit that pair to any commer-
cial solver and you will no doubt receive the answer: X = 1.467, Y = 0.826. However,
for engineers, in the author’s opinion, EES is superior to most solvers because (1) equa-
tions can be entered in any order; (2) scores of mathematical formulas are built-in, such
as the Bessel functions; and (3) thermophysical properties of many fluids are built-in,
such as the steam tables [23]. Both metric and English units are allowed. Equations
need not be written in the traditional BASIC or FORTRAN style. For example,
X — Y + 1 = 0 is perfectly satisfactory; there is no need to retype thisas X = Y — 1.

For example, reconsider Example 1.7 as an EES exercise. One would first enter
the reference properties po and py plus the curve-fit constants B and n:

Pz=1.0
Rhoz =2.0

B =3000

n=717

Then specify the given pressure ratio and the curve-fit relation, Eq. (1.19), for the
equation of state of water:

P =1100%Pz
P/Pz = (B + 1) * (Rho/Rhoz)”"n — B

If you request an initial opinion from the CHECK/FORMAT menu, EES states that there
are six equations in six unknowns and there are no obvious difficulties. Then request
SOLVE from the menu and EES quickly prints out Rho = 2.091, the correct answer
as seen already in Example 1.6. It also prints out values of the other five variables.
Occasionally EES reports “unable to converge” and states what went wrong (division
by zero, square root of a negative number, etc.). One needs only to improve the guesses
and ranges of the unknowns in Variable Information to assist EES to the solution.

In subsequent chapters we will illustrate some implicit (iterative) examples by
using EES and will also assign some advanced problem exercises for which EES is
an ideal approach. The use of an engineering solver, notably EES, is recommended
to all engineers in this era of the personal computer. If EES is not available, the writer
recommends using an Excel spreadsheet.

Uncertainty is a fact of life in engineering. We rarely know any engineering proper-
ties or variables to an extreme degree of accuracy. The uncertainty of data is normally
defined as the band within which one is 95 percent confident that the true value lies.
Recall from Fig. 1.7 that the uncertainty of the ratio u/w. was estimated as +20 percent.



1.13 Uncertainty in Experimental Data 47

There are whole monographs devoted to the subject of experimental uncertainty
[45-46], so we give only a brief summary here.

All experimental data have uncertainty, separated into two causes: (1) a systematic error
due to the instrument or its environment and (2) a random error due to scatter in repeated
readings. We minimize the systematic error by careful calibration and then estimate the
random error statistically. The judgment of the experimenter is of crucial importance.

Here is the accepted mathematical estimate. Suppose a desired result P depends
upon a single experimental variable x. If x has an uncertainty 6x, then the uncertainty
OP is estimated from the calculus:

OP =~ —ox
0x
If there are multiple variables, P = P(xy, X», X3, ... Xy), the overall uncertainty 6P is
calculated as a root-mean-square estimate [48]:

oP 2 9P 2 9P 2712
oP = {(—8&) + <—8x2> + - 4+ (—SxN) } (1.41)
axl axz a'XN

This calculation is statistically much more probable than simply adding linearly
the various uncertainties 6x;, thereby making the unlikely assumption that all
variables simultaneously attain maximum error. Note that it is the responsibility of
the experimenter to establish and report accurate estimates of all the relevant
uncertainties 6x;.

If the quantity P is a simple power-law expression of the other variables, for exam-
ple, P = Const x!"x3>x5*. . ., then each derivative in Eq. (1.41) is proportional to P
and the relevant power-law exponent and is inversely proportional to that variable.

If P = Const x{'x3’x5. . ., then

9P _mP P _nmP oP _mP
ax, X1 0xy Xy 0x3 X3

Thus, from Eq. (1.41),

SP S 2 S 2 S 2 172
L [(mﬁ> . (nzﬁ) N <n3£) N } (1.42)
P X1 Xy X3

Evaluation of 8P is then a straightforward procedure, as in the following example.

EXAMPLE 1.13

The so-called dimensionless Moody pipe friction factor f, plotted in Fig. 6.13, is calculated
in experiments from the following formula involving pipe diameter D, pressure drop Ap,
density p, volume flow rate Q, and pipe length L:

7 D’Ap
8 pO’L
Measurement uncertainties are given for a certain experiment: D = 0.5 percent, Ap = 2.0

percent, p = 1.0 percent, Q = 3.5 percent, and L = 0.4 percent. Estimate the overall uncer-
tainty of the friction factor f.

f:
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1.14 The Fundamentals of
Engineering (FE) Examination

Solution

The coefficient 77%/8 is assumed to be a pure theoretical number, with no uncertainty. The
other variables may be collected using Eqgs. (1.41) and (1.42):

2 2 2 2 27172
o= () (%) (%) () + ()]
f D Ap p 0 IL,
= [{5(0.5%)}> + (2.0%)> + (1.0%)*> + {2(3.5%)}* + (0.4%)*]"*> ~ 7.8% Ans.

By far the dominant effect in this particular calculation is the 3.5 percent error in Q, which
is amplified by doubling, due to the power of 2 on flow rate. The diameter uncertainty,
which is quintupled, would have contributed more had 6D been larger than 0.5 percent.

The road toward a professional engineer’s license has a first stop, the Fundamentals
of Engineering Examination, known as the FE exam. It was formerly known as the
Engineer-in-Training (E-I-T) Examination. This eight-hour national test will probably
soon be required of all engineering graduates, not just for licensure, but as a student assess-
ment tool. The 120-problem four-hour morning session covers many general studies:

Mathematics—15% Ethics and business Material properties—7%
practices—7%
Engineering probability Engineering Fluid mechanics7%
and statistics—7% economics—8%
Chemistry—9% Engineering Electricity and
mechanics—10% magnetism—9%
Computers—7% Strength of Thermodynamics—7%

materials—7%

For the 60-problem, four-hour afternoon session you may choose one of seven mod-
ules: chemical, civil, electrical, environmental, industrial, mechanical, and other/
general engineering. Note that fluid mechanics is an integral topic of the examination.
Therefore, for practice, this text includes a number of end-of-chapter FE problems
where appropriate.

The format for the FE exam questions is multiple-choice, usually with five selec-
tions, chosen carefully to tempt you with plausible answers if you used incorrect units,
forgot to double or halve something, are missing a factor of 7, or the like. In some
cases, the selections are unintentionally ambiguous, such as the following example
from a previous exam:

Transition from laminar to turbulent flow occurs at a Reynolds number of
(A)900 (B) 1200 (C) 1500 (D) 2100  (E) 3000

The “correct” answer was graded as (D), Re = 2100. Clearly the examiner was think-
ing, but forgot to specify, Re, for fiw in a smooth circular pipe, since (see Chaps. 6
and 7) transition is highly dependent on geometry, surface roughness, and the length
scale used in the definition of Re. The moral is not to get peevish about the exam but
simply to go with the flow (pun intended) and decide which answer best fits an under-
graduate training situation. Every effort has been made to keep the FE exam ques-
tions in this text unambiguous.



Problems

Most of the problems herein are fairly straightforward. More
difficult or open-ended assignments are labeled with an aster-
isk as in Prob. 1.18. Problems labeled with an EES icon
(for example, Prob. 1.61) will benefit from the use of the Engi-
neering Equation Solver (EES), while problems labeled with a

computer icon

may require the use of a computer. The stan-

dard end-of-chapter problems 1.1 to 1.90 (categorized in the
problem list below) are followed by fundamentals of engineer-
ing (FE) exam problems FE1.1 to FE1.10 and comprehensive
problems C1.1 to C1.12.

Problem Distribution

Section Topic Problems
1.1, 14,15 Fluid continuum concept 1.1-14
1.6 Dimensions and units 1.5-1.23
1.8 Thermodynamic properties 1.24-1.37
1.9 Viscosity, no-slip condition 1.38-1.61
1.9 Surface tension 1.62-1.71
1.9 Vapor pressure; cavitation 1.72-1.74
1.9 Speed of sound, Mach number 1.75-1.80
1.11 Streamlines 1.81-1.83
1.2 History of fluid mechanics 1.84-1.85an
1.13 Experimental uncertainty 1.86-1.90

The concept of a flid

P1.1

P1.2

P13

A gas at 20°C may be considered rarefid, deviating from
the continuum concept, when it contains less than 10'?
molecules per cubic millimeter. If Avogadro’s number is
6.023 E23 molecules per mole, what absolute pressure (in
Pa) for air does this represent?

Table A.6 lists the density of the standard atmosphere as
a function of altitude. Use these values to estimate,
crudely—say, within a factor of 2—the number of mole-
cules of air in the entire atmosphere of the earth.

For the triangular element in Fig. P1.3, show that a tilted
free liquid surface, in contact with an atmosphere at pres-
sure p,, must undergo shear stress and hence begin to
flow. Hint: Account for the weight of the fluid and show
that a no-shear condition will cause horizontal forces to
be out of balance.

P1.4

Problems 49

Sand, and other granular materials, appear to fiw; that is,
you can pour them from a container or a hopper. There are
whole textbooks on the “transport” of granular materials
[54]. Therefore, is sand a flid ? Explain.

Dimensions and units

P1.5

P1.6

P1.7

P1.8

The mean free path of a gas, [, is defined as the aver-
age distance traveled by molecules between collisions.
A proposed formula for estimating / of an ideal gas is

M

=126
pVRT

What are the dimensions of the constant 1.26? Use the
formula to estimate the mean free path of air at 20°C
and 7 kPa. Would you consider air rarefied at this
condition?

The Saybolt Universal Viscometer, now outdated but
still sold in scientific catalogs, measures the kinematic
viscosity of lubricants [Ref. 49, p. 40]. A specialized
container, held at constant temperature, is filled with
the test fluid. Measure the time ¢ for 60 ml of the fluid
to drain from a small hole or short tube in the bottom.
This time unit, called Saybolt universal seconds, or
SUS, is correlated with kinematic viscosity », in cen-
tistokes (1 stoke = 1 cm?/s), by the following curve-fit
formula:

145

v = 0215t — - for 40 <1 < 100 SUS

(a) Comment on the dimensionality of this equation.
(b) Is the formula physically correct? (¢) Since v varies
strongly with temperature, how does temperature enter
into the formula? (d) Can we easily convert v from cen-
tistokes to mm?*/s?

Convert the following inappropriate quantities into SI
units: (a) a velocity of 5937 yards per hour; (b) a volume
flow rate of 4903 acre-feet of water per week; and (c) the
mass flow rate of 25,616 gallons per day of SAE 30W oil
at 20°C.

Suppose we know little about the strength of materials
but are told that the bending stress ¢ in a beam is pro-
portional to the beam half-thickness y and also depends
on the bending moment M and the beam area moment
of inertia /. We also learn that, for the particular case
M = 2900 in - Ibf,y = 1.5in,and I = 0.4 in*, the pre-
dicted stress is 75 MPa. Using this information and
dimensional reasoning only, find, to three significant
figures, the only possible dimensionally homogeneous
formula o = y f(M, I).
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P1.9

P1.10

P1.11

P1.12

An inverted conical container, 26 in in diameter and 44
in high, is filled with a liquid at 20°C and weighed. The
liquid weight is found to be 5030 ounces. (a) What is
the density of the fluid, in kg/m3? (b) What fluid might
this be? Assume standard gravity, g = 9.807 m/s>.

The Stokes-Oseen formula [33] for drag force F on a
sphere of diameter D in a fluid stream of low velocity V,
density p, and viscosity w is

9
F = 3muDV + szVZDZ

Is this formula dimensionally homogeneous?

In English Engineering units, the specific heat ¢, of air
at room temperature is approximately 0.24 Btu/(Ibm-°F).
When working with kinetic energy relations, it is more
appropriate to express ¢, as a velocity-squared per
absolute degree. Give the numerical value, in this form,
of ¢, for air in (a) SI units, and (b) BG units.

For low-speed (laminar) steady flow through a circular
pipe, as shown in Fig. P1.12, the velocity u varies with
radius and takes the form

A
u= Bl(rg — r2)
n

where w is the fluid viscosity and Ap is the pressure drop
from entrance to exit. What are the dimensions of the con-
stant B?

Pipe wall
. r=r,
T \ u(r)
_ ) — r=0
/

P1.13

P1.12

The efficiency m of a pump is defined as the (dimension-
less) ratio of the power developed by the flow to the
power required to drive the pump:

QAp

input power

*P1.14

P1.15

P1.16

where Q is the volume rate of flow and Ap is the pres-
sure rise produced by the pump. Suppose that a certain
pump develops a pressure rise of 35 Ibf/in> when its flow
rate is 40 L/s. If the input power is 16 hp, what is the effi-
ciency?

Figure P1.14 shows the flow of water over a dam. The
volume flow Q is known to depend only on crest
width B, acceleration of gravity g, and upstream water
height H above the dam crest. It is further known that
Q is proportional to B. What is the form of the only
possible dimensionally homogeneous relation for this
flow rate?

P1.14

Mott [49] recommends the following formula for the fric-
tion head loss A in ft, for flow through a pipe of length
L and diameter D (both must be in ft):

Q 1.852
b= L —————
s (O.SSIAC,,DO'“)

where Q is the volume flow rate in ft*/s, A is the pipe
cross-section area in ft%, and C), is a dimensionless coef-
ficient whose value is approximately 100. Determine the
dimensions of the constant 0.551.

Algebraic equations such as Bernoulli’s relation, Eq. (1)
of Example 1.3, are dimensionally consistent, but what
about differential equations? Consider, for example, the
boundary-layer x-momentum equation, first derived by
Ludwig Prandtl in 1904:

ou " ou ap n ot
u— v— = —— —
Plax 7P dy P ay

where 7 is the boundary-layer shear stress and g, is the
component of gravity in the x direction. Is this equation
dimensionally consistent? Can you draw a general
conclusion?



P1.17

*P1.18

P1.19

P1.20

P1.21

P1.22

P1.23

The Hazen-Williams hydraulics formula for volume rate
of flow Q through a pipe of diameter D and length L is
given by

Ap 0.54
~ 61.902-"3(—)
Q L

where Ap is the pressure drop required to drive the flow.
What are the dimensions of the constant 61.9? Can this
formula be used with confidence for various liquids and
gases?

For small particles at low velocities, the first term in the
Stokes-Oseen drag law, Prob. 1.10, is dominant; hence,
F = KV, where K is a constant. Suppose a particle of
mass m is constrained to move horizontally from the
initial position x = 0 with initial velocity V,. Show
(a) that its velocity will decrease exponentially with
time and (b) that it will stop after traveling a distance
x = mVy/K.

In his study of the circular hydraulic jump formed by a
faucet flowing into a sink, Watson [53] proposed a param-
eter combining volume flow rate Q, density p, and vis-
cosity u of the fluid, and depth 4 of the water in the sink.
He claims that his grouping is dimensionless, with Q in
the numerator. Can you verify this?

Books on porous media and atomization claim that the
viscosity u and surface tension Y of a fluid can be com-
bined with a characteristic velocity U to form an impor-
tant dimensionless parameter. (a) Verify that this is so.
(b) Evaluate this parameter for water at 20°C and a
velocity of 3.5 cm/s. Note: You get extra credit if you
know the name of this parameter.

In 1908, Prandtl’s student, Heinrich Blasius, proposed the
following formula for the wall shear stress 7,, at a position
x in viscous flow at velocity V past a flat surface:

T, = 0.332 p1/2M1/2V3/2x*1/2

Determine the dimensions of the constant 0.332.

The Ekman number, EK, arises in geophysical fluid dynam-
ics. It is a dimensionless parameter combining seawater
density p, a characteristic length L, seawater viscosity w,
and the Coriolis frequency {2 sing, where {2 is the rotation
rate of the earth and ¢ is the latitude angle. Determine the
correct form of Ek if the viscosity is in the numerator.
During World War 11, Sir Geoffrey Taylor, a British fluid
dynamicist, used dimensional analysis to estimate the
energy released by an atomic bomb explosion. He
assumed that the energy released E, was a function of
blast wave radius R, air density p, and time 7. Arrange
these variables into a single dimensionless group, which
we may term the blast wave number.

Problems 51

Thermodynamic properties

P1.24 Air, assumed to be an ideal gas with k£ = 1.40, flows isen-
tropically through a nozzle. At section 1, conditions are
sea level standard (see Table A.6). At section 2, the tem-
perature is —50°C. Estimate (a) the pressure, and (b) the
density of the air at section 2.

A tank contains 0.9 m® of helium at 200 kPa and 20°C.
Estimate the total mass of this gas, in kg, (a) on earth and
(b) on the moon. Also, (¢) how much heat transfer, in MJ,
is required to expand this gas at constant temperature to
a new volume of 1.5 m*?

When we in the United States say a car’s tire is filled “to
32 Ib,” we mean that its internal pressure is 32 Ibf/in’
above the ambient atmosphere. If the tire is at sea level,
has a volume of 3.0 ft’, and is at 75°F, estimate the total
weight of air, in Ibf, inside the tire.

For steam at 40 lbf/inz, some values of temperature and
specific volume are as follows, from Ref. 23:

P1.25

P1.26

P1.27

T, °F ‘ 400 ‘ 500 ‘ 600 ‘ 700 ‘ 800

v, ft*/lbm ‘ 12.624 ‘ 14.165 ‘ 15.685 ‘ 17.195 ‘ 18.699

Is steam, for these conditions, nearly a perfect gas, or is it
wildly nonideal? If reasonably perfect, find a least-squares’
value for the gas constant R, in m?/(s® - K); estimate the
percentage error in this approximation; and compare with
Table A.4.

P1.28 Wet atmospheric air at 100 percent relative humidity con-
tains saturated water vapor and, by Dalton’s law of par-
tial pressures,

Patm = Pdry air + Pwater vapor

Suppose this wet atmosphere is at 40°C and 1 atm.
Calculate the density of this 100 percent humid air, and
compare it with the density of dry air at the same
conditions.

A compressed-air tank holds 5 ft®> of air at 120 1bf/in*
“gage,” that is, above atmospheric pressure. Estimate the
energy, in ft-1bf, required to compress this air from the
atmosphere, assuming an ideal isothermal process.
Repeat Prob. 1.29 if the tank is filled with compressed
water instead of air. Why is the result thousands of times
less than the result of 215,000 ft - 1bf in Prob. 1.29?
One cubic foot of argon gas at 10°C and 1 atm is com-
pressed isentropically to a pressure of 600 kPa. (@) What
will be its new pressure and temperature? (b) If it is
allowed to cool at this new volume back to 10°C, what
will be the final pressure?

P1.29

P1.30

P1.31

"The concept of “least-squares™ error is very important and should
be learned by everyone.
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P1.32 A blimp is approximated by a prolate spheroid 90 m long
and 30 m in diameter. Estimate the weight of 20°C gas
within the blimp for (a) helium at 1.1 atm and (b) air at
1.0 atm. What might the difference between these two
values represent (see Chap. 2)?

Experimental data [55] for the density of n-pentane liquid
for high pressures, at 50°C, are listed as follows:

P1.33

<

Pressure, MPa ‘ 0.01 ‘ 10.23 ‘ 20.70 ‘ 34.31
|

Density, kg/m’ 5863 | 6041 | 6178 | 6328

Interestingly, this data does not fit the author’s suggested
liquid state relation, Eq. (1.19), very well. Therefore
(a) fit the data, as best you can, to a second-order
polynomial. Use your curve-fit to estimate (b) the bulk
modulus of n-pentane at 1 atm, and (c) the speed of sound
of n-pentane at a pressure of 25 MPa.

Consider steam at the following state near the saturation
line: (py, T)) = (1.31 MPa, 290°C). Calculate and com-
pare, for an ideal gas (Table A.4) and the steam tables (or
the EES software), (a) the density p; and (b) the density
py if the steam expands isentropically to a new pressure
of 414 kPa. Discuss your results.

In Table A.4, most common gases (air, nitrogen, oxygen,
hydrogen) have a specific heat ratio k = 1.40. Why do
argon and helium have such high values? Why does NH;
have such a low value? What is the lowest k for any gas
that you know of?

The isentropic bulk modulus B of a fluid is defined in Eq.
(1.38). (a) What are its dimensions? Using theoretical p-p
relations for a gas or liquid, estimate the bulk modulus,
in Pa, of (b) chlorine at 100°C and 10 atm; and (c¢) water,
at 20°C and 1000 atm.

A near-ideal gas has a molecular weight of 44 and a spe-
cific heat ¢, = 610 J/(kg - K). What are (a) its specific
heat ratio, k, and (b) its speed of sound at 100°C?

P1.34

P1.35

P1.36

P1.37

Viscosity, no-slip condition

P1.38 In Fig. 1.8, if the fluid is glycerin at 20°C and the width
between plates is 6 mm, what shear stress (in Pa) is
required to move the upper plate at 5.5 m/s? What is the
Reynolds number if L is taken to be the distance between
plates?

Knowing w for air at 20°C from Table 1.4, estimate its
viscosity at 500°C by (a) the power law and (b) the Suther-
land law. Also make an estimate from (c) Fig. 1.7. Compare
with the accepted value of u = 3.58 E-5 kg/m - s.

For liquid viscosity as a function of temperature, a sim-
plification of the log-quadratic law of Eq. (1.30) is
Andrades equation [21], u = A exp (B/T), where (A, B)

P1.39

*P1.40

are curve-fit constants and 7 is absolute temperature. Fit
this relation to the data for water in Table A.1 and esti-
mate the percentage error of the approximation.

An aluminum cylinder weighing 30 N, 6 cm in diameter
and 40 cm long, is falling concentrically through a long
vertical sleeve of diameter 6.04 cm. The clearance is filled
with SAE 50 oil at 20°C. Estimate the terminal (zero
acceleration) fall velocity. Neglect air drag and assume a
linear velocity distribution in the oil. Hint: You are given
diameters, not radii.

Experimental values for the viscosity of helium at 1 atm
are as follows:

P1.41

P1.42
<

T, K ‘ 200 ‘ 400 ‘ 600 ‘ 800 ‘ 1000 ‘ 1200

wu, kg/(m-s) ‘1.50 E-5 ‘ 2.43 E-5 ‘3.20 E-5 ‘3.88 E-5 ‘ 4.50 E-5 ‘5.08 E-5

Fit these values to either (a) a power law or (b) the
Sutherland law, Eq. (1.29).

For the flow of gas between two parallel plates of Fig.
1.8, reanalyze for the case of slip fiw at both walls. Use
the simple slip condition, Suy.,; = € (du/dy)ya, where €
is the mean free path of the fluid. Sketch the expected
velocity profile and find an expression for the shear stress
at each wall.

SAE 50 oil at 20°C fills the concentric annular space
between an inner cylinder, r; = 5 cm, and an outer
cylinder, r, = 6 cm. The length of the cylinders is 120 cm.
If the outer cylinder is fixed and the inner cylinder
rotates at 900 rev/min, use the linear profile approxi-
mation to estimate the power, in watts, required to
maintain the rotation. Neglect any temperature change
of the oil.

A block of weight W slides down an inclined plane
while lubricated by a thin film of oil, as in Fig. P1.45.
The film contact area is A and its thickness is 4. Assum-
ing a linear velocity distribution in the film, derive an
expression for the “terminal” (zero-acceleration) veloc-
ity V of the block. Find the terminal velocity of the
block if the block mass is 6 kg, A = 35 cm?, 6 = 15°,
and the film is 1-mm-thick SAE 30 oil at 20°C.

P1.43

P1.44

P1.45

Liquid film of
thickness &

Block contact
} 0 area A

P1.45



P1.46 A simple and popular model for two nonnewtonian fluids
in Fig. 1.9a is the power-law:

-<(3)
T dy

where C and n are constants fit to the fluid [16]. From Fig.
1.9a, deduce the values of the exponent 7 for which the fluid
is (a) newtonian, (b) dilatant, and (c) pseudoplastic. Con-
sider the specific model constant C = 0.4 N - s"/m?, with
the fluid being sheared between two parallel plates as in
Fig. 1.8. If the shear stress in the fluid is 1200 Pa, find
the velocity V of the upper plate for the cases (d) n = 1.0,
(e) n = 1.2,and (f) n = 0.8.

Data for the apparent viscosity of average human blood,
at normal body temperature of 37°C, varies with shear
strain rate, as shown in the following table.

P1.47

Strain rate, s ! ‘ 1 ‘ 10 ‘ 100 ‘ 1000

Apparent viscosity, ‘ 0.011 ‘ 0.009 ‘ 0.006 ‘ 0.004

kg/(m + s)

(a) Is blood a nonnewtonian fluid? (b) If so, what type of
fluid is it? (¢) How do these viscosities compare with
plain water at 37°C?

A thin plate is separated from two fixed plates by very
viscous liquids w; and w,, respectively, as in Fig. P1.48.
The plate spacings /; and &, are unequal, as shown. The
contact area is A between the center plate and each fluid.
(a) Assuming a linear velocity distribution in each fluid,
derive the force F required to pull the plate at velocity V.
(b) Is there a necessary relation between the two viscosi-
ties, w; and w,?

P1.48

% Z)

hy M1

| | —F,V

% Z)

P1.48

P1.49 An amazing number of commercial and laboratory
devices have been developed to measure fluid viscosity,
as described in Refs. 29 and 49. Consider a concentric
shaft, fixed axially and rotated inside the sleeve. Let the
inner and outer cylinders have radii r; and r,, respec-

tively, with total sleeve length L. Let the rotational rate
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be () (rad/s) and the applied torque be M. Using these
parameters, derive a theoretical relation for the viscosity
w of the fluid between the cylinders.

A simple viscometer measures the time 7 for a solid sphere
to fall a distance L through a test fluid of density p. The
fluid viscosity w is then given by

P1.50

= Wield = 2pDL
37DL 1%

where D is the sphere diameter and W, is the sphere net
weight in the fluid. (a) Prove that both of these formulas
are dimensionally homogeneous. (b) Suppose that a 2.5 mm
diameter aluminum sphere (density 2700 kg/m®) falls in an
oil of density 875 kg/m>. If the time to fall 50 cm is 32 s,
estimate the oil viscosity and verify that the inequality is
valid.

An approximation for the boundary-layer shape in Figs.
1.6b and P1.51 is the formula

P1.51

ﬂ), 0=y=s

u(y) = Usin(26

where U is the stream velocity far from the wall and & is
the boundary layer thickness, as in Fig. P.151. If the fluid
is helium at 20°C and 1 atm, and if U = 10.8 m/s and
8 = 3 cm, use the formula to (a) estimate the wall shear
stress 7,, in Pa, and (b) find the position in the boundary
layer where 7 is one-half of 7,,.

u(y)

P1.51

P1.52 The belt in Fig. P1.52 moves at a steady velocity V and
skims the top of a tank of oil of viscosity w, as shown.

L

| a
V=
¢ C ) Moving belt, width b ( ) T

' Oil, depth h ‘

P1.52
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*P1.53

*P1.54

P1.55

Assuming a linear velocity profile in the oil, develop a
simple formula for the required belt-drive power P as
a function of (h, L, V, b, n). What belt-drive power P,
in watts, is required if the belt moves at 2.5 m/s over
SAE 30W oil at 20°C, with L =2 m, b = 60 cm, and
h =3 cm?

A solid cone of angle 26, base ry, and density p,. is rotat-
ing with initial angular velocity w, inside a conical seat,
as shown in Fig. P1.53. The clearance # is filled with oil
of viscosity u. Neglecting air drag, derive an analytical
expression for the cone’s angular velocity w(?) if there is
no applied torque.

Base
radius r,

|
IS0
|

0 '

P1.53

A disk of radius R rotates at an angular velocity () inside
a disk-shaped container filled with oil of viscosity u, as
shown in Fig. P1.54. Assuming a linear velocity profile
and neglecting shear stress on the outer disk edges, derive
a formula for the viscous torque on the disk.

Clearance

I R ! R 1

A block of weight W is being pulled over a table by another
weight W,, as shown in Fig. P1.55. Find an algebraic

*P1.56

P1.57

formula for the steady velocity U of the block if it slides
on an oil film of thickness / and viscosity u. The block
bottom area A is in contact with the oil. Neglect the cord
weight and the pulley friction. Assume a linear velocity
profile in the oil film.

U <

P1.55

The device in Fig. P1.56 is called a cone-plate viscome-
ter [29]. The angle of the cone is very small, so that sin
0 = 0, and the gap is filled with the test liquid. The
torque M to rotate the cone at a rate () is measured.
Assuming a linear velocity profile in the fluid film, derive
an expression for fluid viscosity w as a function of (M,
R, Q, 0).

Fluid

AN

P1.56

Extend the steady flow between a fixed lower plate
and a moving upper plate, from Fig. 1.8, to the case
of two immiscible liquids between the plates, as in
Fig. P1.57.

] Fixed

P1.57
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0, m*/h

(a) Sketch the expected no-slip velocity distribution u(y)
between the plates. (b) Find an analytic expression for the
velocity U at the interface between the two liquid layers.
(c¢) What is the result of (b) if the viscosities and layer
thicknesses are equal?

The laminar pipe flow example of Prob. 1.12 can be used
to design a capillary viscometer [29]. If Q is the volume
flow rate, L is the pipe length, and Ap is the pressure drop
from entrance to exit, the theory of Chap. 6 yields a for-
mula for viscosity:

_ WrgAp
8LO

Pipe end effects are neglected [29]. Suppose our capil-
lary has ro = 2 mm and L = 25 cm. The following flow
rate and pressure drop data are obtained for a certain
fluid:

‘ 0.36 ‘ 0.72 ‘ 1.08 ‘

1.44 ‘ 1.80

Ap, kPa

P1.59
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*P1.61

‘ 159 ‘ 318 ‘ 477 ‘ 1274 ‘ 1851

What is the viscosity of the fluid? Note: Only the first
three points give the proper viscosity. What is peculiar
about the last two points, which were measured
accurately?

A solid cylinder of diameter D, length L, and density pg
falls due to gravity inside a tube of diameter D,. The
clearance, Dy — D << D, is filled with fluid of density
p and viscosity w. Neglect the air above and below the
cylinder. Derive a formula for the terminal fall velocity of
the cylinder. Apply your formula to the case of a steel
cylinder, D = 2 cm, Dy = 2.04 cm, L = 15 cm, with a
film of SAE 30 oil at 20°C.

Pipelines are cleaned by pushing through them a close-
fitting cylinder called a pig. The name comes from the
squealing noise it makes sliding along. Reference 50
describes a new nontoxic pig, driven by compressed air,
for cleaning cosmetic and beverage pipes. Suppose the
pig diameter is 5-15/16 in and its length 26 in. It cleans
a 6-in-diameter pipe at a speed of 1.2 m/s. If the
clearance is filled with glycerin at 20°C, what pressure
difference, in pascals, is needed to drive the pig?
Assume a linear velocity profile in the oil and neglect
air drag.

An air-hockey puck has a mass of 50 g and is 9 cm in
diameter. When placed on the air table, a 20°C air film,
of 0.12-mm thickness, forms under the puck. The puck
is struck with an initial velocity of 10 m/s. Assuming a
linear velocity distribution in the air film, how long will
it take the puck to (a) slow down to 1 m/s and (b) stop
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completely? Also, (c) how far along this extremely long
table will the puck have traveled for condition (a)?

Surface tension

P1.62

P1.63

P1.64

P1.65

P1.66

P1.67

*P1.68

The hydrogen bubbles that produced the velocity profiles
in Fig. 1.15 are quite small, D = 0.01 mm. If the
hydrogen—water interface is comparable to air—water and
the water temperature is 30°C, estimate the excess
pressure within the bubble.

Derive Eq. (1.33) by making a force balance on the fluid
interface in Fig. 1.11c.

Determine the maximum diameter, in milliliters, of a solid
aluminum ball, density p, = 2700 kg/m>, which will float
on a clean water-air surface at 20°C.

The system in Fig. P1.65 is used to calculate the
pressure p; in the tank by measuring the 15-cm height
of liquid in the 1-mm-diameter tube. The fluid is at
60°C. Calculate the true fluid height in the tube and the
percentage error due to capillarity if the fluid is
(a) water or (b) mercury.

P

A thin wire ring, 3 cm in diameter, is lifted from a water
surface at 20°C. Neglecting the wire weight, what is the
force required to lift the ring? Is this a good way to meas-
ure surface tension? Should the wire be made of any par-
ticular material?

A vertical concentric annulus, with outer radius r, and inner
radius r;, is lowered into a fluid of surface tension Y and
contact angle 6 < 90°. Derive an expression for the capil-
lary rise & in the annular gap if the gap is very narrow.
Make an analysis of the shape m(x) of the water—air inter-
face near a plane wall, as in Fig. P1.68, assuming that the
slope is small, R~' = d*n/dx’. Also assume that the pres-
sure difference across the interface is balanced by the

specific weight and the interface height, Ap = pgn.
The boundary conditions are a wetting contact angle 6 at

P1.65
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x = 0 and a horizontal surface n = 0 as x — . What is
the maximum height % at the wall?

P1.68 x=0

P1.69 A solid cylindrical needle of diameter d, length L, and
density p, may float in liquid of surface tension Y. Neglect
buoyancy and assume a contact angle of 0°. Derive a for-
mula for the maximum diameter d,,,, able to float in the
liquid. Calculate d,,,, for a steel needle (SG = 7.84) in
water at 20°C.

Derive an expression for the capillary height change 4 for
a fluid of surface tension Y and contact angle 6 between
two vertical parallel plates a distance W apart, as in Fig.
P1.70. What will 4 be for water at 20°C if W = 0.5 mm?

(¢

M
l?

P1.70

W —

P1.70 # #

*P1.71 A soap bubble of diameter D; coalesces with another
bubble of diameter D, to form a single bubble D3 with
the same amount of air. Assuming an isothermal process,
derive an expression for finding D as a function of Dy,

D5, pam» and Y.

Vapor pressure

P1.72 Early mountaineers boiled water to estimate their altitude.
If they reach the top and find that water boils at 84°C,
approximately how high is the mountain?

P1.73 A small submersible moves at velocity V, in fresh water
at 20°C, at a 2-m depth, where ambient pressure is
131 kPa. Its critical cavitation number is known to be
C, = 0.25. At what velocity will cavitation bubbles begin
to form on the body? Will the body -cavitate if
V = 30 m/s and the water is cold (5°C)?

Oil, with a vapor pressure of 20 kPa, is delivered through
a pipeline by equally spaced pumps, each of which
increases the oil pressure by 1.3 MPa. Friction losses in
the pipe are 150 Pa per meter of pipe. What is the maxi-
mum possible pump spacing to avoid cavitation of the o0il?

P1.74

Speed of sound, Mach number

P1.75 An airplane flies at 555 mi/h. At what altitude in the stan-
dard atmosphere will the airplane’s Mach number be
exactly 0.8?

Estimate the speed of sound of steam at 200°C and
400 kPa (a) by an ideal-gas approximation (Table A.4)
and (b) using EES (or the steam tables) and making small
isentropic changes in pressure and density and approxi-
mating Eq. (1.37).

The density of 20°C gasoline varies with pressure approx-
imately as follows:

P1.76

*P1.77

p, atm ‘ 1 ‘ 500 ‘ 1500

44.85 ‘

1000 ‘

p, Ibmy/ft? ‘ 42.45 ‘ 46.60 ‘ 47.98

Use these data to estimate (a) the speed of sound (m/s)
and (b) the bulk modulus (MPa) of gasoline at 1 atm.
Sir Isaac Newton measured the speed of sound by timing
the difference between seeing a cannon’s puff of smoke
and hearing its boom. If the cannon is on a mountain 5.2
mi away, estimate the air temperature in degrees Celsius
if the time difference is (a) 24.2 s and (b) 25.1 s.

From Table A.3, the density of glycerin at standard
conditions is about 1260 kg/m>. At a very high pressure
of 8000 Ib/in?, its density increases to approximately
1275 kg/m®. Use this data to estimate the speed of sound
of glycerin, in ft/s.

In Problem P1.24, for the given data, the air velocity at
section 2 is 1180 ft/s. What is the Mach number at that
section?

P1.78

P1.79

P1.80

Streamlines

P1.81 Repeat Example 1.12 by letting the velocity components
increase linearly with time:

V = Kxti — Kytj + Ok

Find and sketch, for a few representative times, the instan-
taneous streamlines. How do they differ from the steady
flow lines in Example 1.12?
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A velocity field is given by u = Vcosf, v = Vsinf, and
w = 0, where V and 6 are constants. Derive a formula for
the streamlines of this flow.

A two-dimensional unsteady velocity field is given by u =
x(1 + 2¢), v = y. Find the equation of the time-varying
streamlines that all pass through the point (xy, yo) at some
time t. Sketch a few of these.

History of flid mechanics

P1.84

P1.85

In the early 1900s, the British chemist Sir Cyril Hinshel-
wood quipped that fluid dynamics study was divided into
“workers who observed things they could not explain and
workers who explained things they could not observe.” To
what historic situation was he referring?

Do some reading and report to the class on the life and
achievements, especially vis-avis flid mechanics, of

(a) Evangelista Torricelli (1608-1647)

(b) Henri de Pitot (1695-1771)

(¢) Antoine Chéy (1718— 1798)

(d) Gotthilf Heinrich Ludwig Hagen (1797-1884)

(e) Julius Weisbach (1806—1871)

() George Gabriel Stokes (1819-1903)

(g) Moritz Weber (1871-1951)

(h) Theodor von Kima (1881- 1963)

(i) Paul Richard Heinrich Blasius (1883-1970)

(/) Ludwig Prandtl (1875-1953)

(k) Osborne Reynolds (1842-1912)

() John William Strutt, Lord Rayleigh (1842-1919)

(m) Daniel Bernoulli (1700-1782)

(n) Leonhard Euler (1707-1783)

Experimental uncertainty

P1.86

A right circular cylinder volume v is to be calculated from
the measured base radius R and height H. If the uncer-
tainty in R is 2 percent and the uncertainty in H is

Fundamentals of Engineering Exam Problems

FE1.1

FE1.2

FE1.3

The absolute viscosity w of a fluid is primarily a
function of

(a) Density, (b) Temperature, (c) Pressure, (d) Velocity,
(e) Surface tension

Carbon dioxide, at 20°C and 1 atm, is compressed
isentropically to 4 atm. Assume CO, is an ideal gas.
The final temperature would be

(a) 130°C, (D) 162°C, (c) 171°C, (d) 237°C, (e) 313°C
Helium has a molecular weight of 4.003. What is the
weight of 2 m® of helium at 1 atm and 20°C?

(@ 33N,(b)65N, (¢c) 11.8N, (d) 23.5N, (¢) 942 N

P1.87

P1.88

P1.89

P1.90

FE1.4

FE1.5
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3 percent, estimate the overall uncertainty in the calcu-
lated volume.

A dimensionless parameter, important in natural convec-
tion heat transfer of fluids, is the Grashof number:

gBp L’ AT
Gr=—"—F5—
78
where g is the acceleration of gravity, 3 is the thermal
expansion coefficient, p the density, L a characteristic
length, AT a temperature difference, and u the viscos-
ity. If the uncertainty of each of these variables is *2
percent, determine the overall uncertainty of the
Grashof number.
The device in Fig. P1.54 is called a rotating disk
viscometer [29]. Suppose that R = 5 cm and 2 = 1 mm.
(a) If the torque required to rotate the disk at 900 r/min
is 0.537 N - m, what is the viscosity of the fluid? (b) If
the uncertainty in each parameter (M, R, h, ()) is =1 per-
cent, what is the overall uncertainty in the viscosity?
For the cone-plate viscometer of Fig. P1.56, suppose R =
6 cm and 6 = 3°. (a) If the torque required to rotate the
cone is 0.157 N - m, what is the viscosity of the fluid?
(b) If the uncertainty in each parameter (M, R, 6, ()
is *£2 percent, what is the overall uncertainty in the
viscosity?
The dimensionless drag coeffiient C p, of a sphere, to be
studied in Chaps. 5 and 7, is

F

Cph=—-———
P (12)pVA(m/4)D?

where F is the drag force, p the fluid density, V the fluid
velocity, and D the sphere diameter. If the uncertainties
of these variables are F' (*3 percent), p (£1.5 percent),
V (=2 percent), and D (=1 percent), what is the overall
uncertainty in the measured drag coefficient?

An oil has a kinematic viscosity of 1.25 E-4 m%/s and
a specific gravity of 0.80. What is its dynamic (absolute)
viscosity in kg/(m - s)?

(a) 0.08, (b) 0.10, (c) 0.125, (d) 1.0, (e) 1.25
Consider a soap bubble of diameter 3 mm. If the sur-
face tension coefficient is 0.072 N/m and external
pressure is 0 Pa gage, what is the bubble’s internal
gage pressure?

(a) —24 Pa, (b) +48 Pa, (¢) +96 Pa, (d) +192 Pa,
(e) —192 Pa
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FE1.6

FE1.7

FE1.8

The only possible dimensionless group that combines
velocity V, body size L, fluid density p, and surface
tension coefficient o is

(@) LpalV, (b) pVL*o, (¢) poVPIL, (d) oLVlp,
(e) pLVz/a'

Two parallel plates, one moving at 4 m/s and the
other fixed, are separated by a 5-mm-thick layer of
oil of specific gravity 0.80 and kinematic viscosity
1.25 E-4 m%/s. What is the average shear stress in
the oil?

(a) 80 Pa, (b) 100 Pa, (c) 125 Pa, (d) 160 Pa,
(e) 200 Pa

Carbon dioxide has a specific heat ratio of 1.30 and a
gas constant of 189 J/(kg - °C). If its temperature rises
from 20 to 45°C, what is its internal energy rise?

(a) 12.6 kl/kg, (b) 15.8 kl/kg, (c) 17.6 kl/kg,
(d) 20.5 kJ/kg, (e) 25.1 kl/kg

Comprehensive Problems

Cl.1

Sometimes we can develop equations and solve practi-
cal problems by knowing nothing more than the dimen-
sions of the key parameters in the problem. For exam-
ple, consider the heat loss through a window in a
building. Window efficiency is rated in terms of “R
value,” which has units of (ft> - h - °F)/Btu. A certain
manufacturer advertises a double-pane window with an
R value of 2.5. The same company produces a triple-
pane window with an R value of 3.4. In either case the
window dimensions are 3 ft by 5 ft. On a given winter
day, the temperature difference between the inside and
outside of the building is 45°F.

(a) Develop an equation for the amount of heat lost in a
given time period At, through a window of area A, with
R value R, and temperature difference AT. How much
heat (in Btu) is lost through the double-pane window
in one 24-h period?

How much heat (in Btu) is lost through the triple-pane
window in one 24-h period?

Suppose the building is heated with propane
gas, which costs $3.25 per gallon. The propane
burner is 80 percent efficient. Propane has approxi-
mately 90,000 Btu of available energy per gallon.
In that same 24-h period, how much money would
a homeowner save per window by installing triple-
pane rather than double-pane windows?

Finally, suppose the homeowner buys 20 such
triple-pane windows for the house. A typical winter
has the equivalent of about 120 heating days at a
temperature difference of 45°F. Each triple-pane

(b)
@

d

=

FE1.9

FE1.10

C1.2

C1.3

A certain water flow at 20°C has a critical cavitation
number, where bubbles form, Ca = 0.25, where Ca =
2(p.— pvap)/pvz. If p, = 1 atm and the vapor pressure
is 0.34 pounds per square inch absolute (psia), for what
water velocity will bubbles form?

(a) 12 mi/h, (b) 28 mi/h, (¢) 36 mi/h, (d) 55 mi/h,
(e) 63 mi/h

Example 1.10 gave an analysis that predicted that the
viscous moment on a rotating disk M = wuQR*/(2h).
If the uncertainty of each of the four variables (w, (),
R, h) is 1.0 percent, what is the estimated overall
uncertainty of the moment M?

(a) 4.0 percent (b) 4.4 percent (c¢) 5.0 percent (d) 6.0
percent (e) 7.0 percent

window costs $85 more than the double-pane
window. Ignoring interest and inflation, how many
years will it take the homeowner to make up the
additional cost of the triple-pane windows from
heating bill savings?
When a person ice skates, the surface of the ice actually
melts beneath the blades, so that he or she skates on a
thin sheet of water between the blade and the ice.
(a) Find an expression for total friction force on the
bottom of the blade as a function of skater velocity
V, blade length L, water thickness (between the
blade and the ice) h, water viscosity w, and blade
width W.
Suppose an ice skater of total mass m is skating
along at a constant speed of V, when she suddenly
stands stiff with her skates pointed directly forward,
allowing herself to coast to a stop. Neglecting fric-
tion due to air resistance, how far will she travel
before she comes to a stop? (Remember, she is
coasting on rwo skate blades.) Give your answer for
the total distance traveled, x, as a function of V, m,
L, h, u, and W.
Find x for the case where V;, = 4.0 m/s, m = 100 kg,
L =30cm, W= 5.0 mm, and 2 = 0.10 mm. Do you
think our assumption of negligible air resistance is a
good one?
Two thin flat plates, tilted at an angle «, are placed in a
tank of liquid of known surface tension Y and contact
angle 0, as shown in Fig. C1.3. At the free surface of the
liquid in the tank, the two plates are a distance L apart

(b)

(©)
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and have width b into the page. The liquid rises a distance
h between the plates, as shown.

(a) What is the total upward (z-directed) force, due to sur-
face tension, acting on the liquid column between the
plates?

(b) If the liquid density is p, find an expression
for surface tension Y in terms of the other variables.

‘4—@—»
1<
D ——
o) ——

A

1<

C1.3

Oil of viscosity u and density p drains steadily down the
side of a tall, wide vertical plate, as shown in Fig. C1.4.
In the region shown, fully developed conditions exist; that
is, the velocity profile shape and the film thickness & are
independent of distance z along the plate. The vertical
velocity w becomes a function only of x, and the shear
resistance from the atmosphere is negligible.

Plate

Oil film

l Air

-~ ) —

Cl14 *

(a) Sketch the approximate shape of the velocity profile
w(x), considering the boundary conditions at the wall
and at the film surface.

C1.5

C1.6

y, m
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(b) Suppose film thickness 8, and the slope of the veloc-
ity profile at the wall, (dw/dx)y.;, are measured by a
laser Doppler anemometer (to be discussed in Chap.
6). Find an expression for the viscosity of the oil as
a function of p, 8, (dw/dx).;, and the gravitational
acceleration g. Note that, for the coordinate system
given, both w and (dw/dx),,,; are negative.

Viscosity can be measured by flow through a thin-bore

or capillary tube if the flow rate is low. For length

L, (small) diameter D << L, pressure drop Ap, and (low)

volume flow rate Q, the formula for viscosity is u =

D4Ap/(CLQ), where C is a constant.

(a) Verify that C is dimensionless. The following data
are for water flowing through a 2-mm-diameter tube
which is 1 meter long. The pressure drop is held
constant at Ap = 5 kPa.

T, °C ‘ 70.0

10.0 ‘ 40.0 ‘

Q, L/min ‘ 0.091 ‘ 0.179 ‘ 0.292

(b) Using proper SI units, determine an average value of
C by accounting for the variation with temperature of
the viscosity of water.

The rotating-cylinder viscometer in Fig. C1.6 shears the

fluid in a narrow clearance Ar, as shown. Assuming a

linear velocity distribution in the gaps, if the driving

torque M is measured, find an expression for u by

(a) neglecting and (b) including the bottom friction.

T Viscous
fluid

L Solid
cylinder

— [+ Ar<<R

C1.6

SAE 10W oil at 20°C flows past a flat surface, as in
Fig. 1.6b. The velocity profile u(y) is measured, with the
following results:

‘ 0.0 ‘ 0.003 ‘ 0.006 ‘ 0.009 ‘ 0.012 ‘ 0.015

u, m/s ‘ 0.0 ‘

1.99 ‘ 3.94 ‘ 5.75 ‘ 7.29 ‘ 8.46
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Using your best interpolating skills, estimate the shear
stress in the oil (@) at the wall and (b) at y = 15 mm.

A mechanical device that uses the rotating cylinder of
Fig. C1.6 is the Stormer viscometer [29]. Instead of being
driven at constant (2, a cord is wrapped around the shaft
and attached to a falling weight W. The time 7 to turn the
shaft a given number of revolutions (usually five) is
measured and correlated with viscosity. The formula is

~ A
W—-B

where A and B are constants that are determined by cali-
brating the device with a known fluid. Here are calibra-
tion data for a Stormer viscometer tested in glycerol,
using a weight of 50 N:

wu, kg/m-s ‘ 0.23 ‘ 0.34 ‘ 0.57 ‘ 0.84 ‘ 1.15

t, sec ‘ 15 ‘ 23 ‘ 38 ‘ 56 ‘ 71

(a) Find reasonable values of A and B to fit this calibra-
tion data. Hint: The data are not very sensitive to the
value of B.

(b) A more viscous fluid is tested with a 100 N weight and
the measured time is 44 s. Estimate the viscosity of this
fluid.

The lever in Fig. C1.9 has a weight W at one end and is
tied to a cylinder at the left end. The cylinder has negli-
gible weight and buoyancy and slides upward through a
film of heavy oil of viscosity w. (a) If there is no acceler-
ation (uniform lever rotation), derive a formula for the rate
of fall V, of the weight. Neglect the lever weight. Assume
a linear velocity profile in the oil film. (b) Estimate the fall
velocity of the weight if W = 20 N, L; = 75 cm, L, =
50cm, D =10 cm, L = 22 ¢cm, AR = 1 mm, and the oil
is glycerin at 20°C.

P 7
Vi pivot l
V,?

Cylinder, diameter D, length L,
in an oil film of thickness AR.

C1.9

C1.10 A popular gravity-driven instrument is the Cannon-

Ubbelohde viscometer, shown in Fig. C1.10. The test

Cl1n

C1.12

liquid is drawn up above the bulb on the right side and
allowed to drain by gravity through the capillary tube
below the bulb. The time ¢ for the meniscus to pass
from upper to lower timing marks is recorded. The
kinematic viscosity is computed by the simple formula:

v =Ct

where C is a calibration constant. For » in the range of
100-500 mm?/s, the recommended constant is C =
0.50 mm?/s?, with an accuracy less than 0.5 percent.

<—— Upper timing mark
<—— Lower timing mark

<—— Capillary tube

C1.10 The Cannon-Ubbe-
lohde viscometer. [Cour-
tesy of Cannon Instrument
Company.]

E

(a) What liquids from Table A.3 are in this viscosity
range? (b) Is the calibration formula dimensionally con-
sistent? (¢) What system properties might the constant C
depend upon? (d) What problem in this chapter hints at a
formula for estimating the viscosity?

Mott [Ref. 49, p. 38] discusses a simple falling-ball vis-
cometer, which we can analyze later in Chapter 7. A small
ball of diameter D and density p, falls though a tube of
test liquid (p, w). The fall velocity V is calculated by the
time to fall a measured distance. The formula for calcu-
lating the viscosity of the fluid is

(p» — p)gD’

TV

This result is limited by the requirement that the
Reynolds number (pVD/w) be less than 1.0. Suppose a steel
ball (SG = 7.87) of diameter 2.2 mm falls in SAE 25W oil
(SG = 0.88) at 20°C. The measured fall velocity is 8.4 cm/s.
(a) What is the viscosity of the oil, in kg/m-s? (b) Is the
Reynolds number small enough for a valid estimate?

A solid aluminum disk (SG = 2.7) is 2 in in diameter and
3/16 in thick. It slides steadily down a 14° incline that is
coated with a castor oil (SG = 0.96) film one hundredth
of an inch thick. The steady slide velocity is 2 cm/s. Using
Figure A.1 and a linear oil velocity profile assumption,
estimate the temperature of the castor oil.
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000S HOLE

We live comfortably in a hydrostatic condition, namely, our atmosphere, at pressures of 100 kPa
or less. The ocean, however, produces crushing hydrostatic pressures, increasing downward by
1 atm every 10 meters. The Deep Submergence Vehicle ALVIN is the descendant of
Dr. William Beebe’s cable-supported Bathysphere, which reached the depth of 1000 meters in
the 1930s. ALVIN is a self-propelled vehicle (no cable), with good visibility, video cameras,
instrument probes, and external manipulators. It can carry three passengers as deep as 4500 meters,
where the pressure is 450 atm, or about 3.3 tons per square inch. (Photo courtesy of Mark Spear
of the Woods Hole Oceanographic Institution.)
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2.1 Pressure and Pressure
Gradient

Chapter 2
Pressure Distribution
in a Fluid

Motivation. Many fluid problems do not involve motion. They concern the pressure
distribution in a static fluid and its effect on solid surfaces and on floating and sub-
merged bodies.

When the fluid velocity is zero, denoted as the hydrostatic condition, the pressure
variation is due only to the weight of the fluid. Assuming a known fluid in a given
gravity field, the pressure may easily be calculated by integration. Important applica-
tions in this chapter are (1) pressure distribution in the atmosphere and the oceans,
(2) the design of manometer, mechanical, and electronic pressure instruments, (3) forces
on submerged flat and curved surfaces, (4) buoyancy on a submerged body, and (5) the
behavior of floating bodies. The last two result in Archimedes’ principles.

If the fluid is moving in rigid-body motion, such as a tank of liquid that has been
spinning for a long time, the pressure also can be easily calculated because the fluid
is free of shear stress. We apply this idea here to simple rigid-body accelerations in
Sec. 2.9. Pressure measurement instruments are discussed in Sec. 2.10. As a matter of
fact, pressure also can be analyzed in arbitrary (nonrigid-body) motions V(x, y, z, 1),
but we defer that subject to Chap. 4.

In Fig. 1.1 we saw that a fluid at rest cannot support shear stress and thus Mohr’s
circle reduces to a point. In other words, the normal stress on any plane through a
fluid element at rest is a point property called the flid pressure p, taken positive for
compression by common convention. This is such an important concept that we shall
review it with another approach.

Figure 2.1 shows a small wedge of fluid at rest of size Ax by Az by As and depth
b into the paper. There is no shear by definition, but we postulate that the pressures
P P2 and p, may be different on each face. The weight of the element also may
be important. The element is assumed small, so the pressure is constant on each
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Fig. 2.1 Equilibrium of a small
wedge of fluid at rest.

Pressure Force on a Fluid
Element

z (up)

Element weight:
dW=pg(EbAxAz)

0
' Width b into paper

face. Summation of forces must equal zero (no acceleration) in both the x and z
directions.

>F.=0=pbAz — p,bAssinf

S F.=0=p.bAx — p,bAscos 8 — 5pgh Ax Az @D
But the geometry of the wedge is such that
Assin 6 = Az Ascos 6 = Ax 2.2)
Substitution into Eq. (2.1) and rearrangement give
Py=Pu  P:=patapg Az (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free,
condition: (1) There is no pressure change in the horizontal direction, and (2) there
is a vertical change in pressure proportional to the density, gravity, and depth change.
We shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,” Az — 0 and Egs. (2.3)
become

Pe=P.=pa=Dp 24)

Since 6 is arbitrary, we conclude that the pressure p in a static fluid is a point prop-
erty, independent of orientation.

Pressure (or any other stress, for that matter) causes a net force on a fluid element
when it varies spatially." To see this, consider the pressure acting on the two x faces
in Fig. 2.2. Let the pressure vary arbitrarily

p=pyz1)

The net force in the x direction on the element in Fig. 2.2 is given by

J J
dF, = pdydz _<p +—pdx>dydz = ——pdxdydz
ax 0x

'An interesting application for a large element is seen in Fig. 3.7.



Fig. 2.2 Net x force on an element
due to pressure variation.
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In like manner the net force dF), involves —dp/dy, and the net force dF. concerns
—dpldz. The total net-force vector on the element due to pressure is

0p  .dp ap)
dF.... = | —i% — j£ - k=L )dxdyd 2.5
press < L Jay Py x dy dz (2.5)

We recognize the term in parentheses as the negative vector gradient of p. Denoting f
as the net force per unit element volume, we rewrite Eq. (2.5) as

f..=—Vp (2.6)

press

. L0 .9 d
where V = gradientoperator = i— + j— + k—
ox dy 0z
Thus it is not the pressure but the pressure gradient causing a net force that must be
balanced by gravity or acceleration or some other effect in the fluid.

The pressure gradient is a surface force that acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting
on the entire mass of the element. Here we consider only the gravity force, or weight
of the element:

dF¥ ., = pgdxdy dz
2.7)
or fgrav = pg
In addition to gravity, a fluid in motion will have surface forces due to viscous
stresses. By Newton’s law, Eq. (1.2), the sum of these per-unit-volume forces equals
the mass per unit volume (density) times the acceleration a of the fluid element:

Ef = fpress + f:grav + fvisc = _VP + pg + fvisc = pa (2.8)

This general equation will be studied in detail in Chap. 4. Note that Eq. (2.8) is a vector
relation, and the acceleration may not be in the same vector direction as the velocity.
For our present topic, hydrostatics, the viscous stresses and the acceleration are zero.
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Fig. 2.3 Illustration of absolute,
gage, and vacuum pressure
readings.

Gage Pressure and Vacuum
Pressure: Relative Terms

2.3 Hydrostatic Pressure
Distributions

p (Pascals)

120.000 High pressure:
’ = 120,000 Pa abs = 30,000 Pa gage
t p gag
30,000
i Local atmosphere:
90,000 p =90,000 Pa abs = 0 Pa gage = 0 Pa vacuum
40,000
0.000 Vacuum pressure:
30, p = 50,000 Pa abs = 40,000 Pa vacuum
50,000
0 Absolute zero reference:
1— (Tension) p =0 Pa abs = 90,000 Pa vacuum
ension

Before embarking on examples, we should note that engineers are apt to specify pres-
sures as (1) the absolute or total magnitude or (2) the value relative to the local ambi-
ent atmosphere. The second case occurs because many pressure instruments are of
differential type and record, not an absolute magnitude, but the difference between
the fluid pressure and the atmosphere. The measured pressure may be either higher
or lower than the local atmosphere, and each case is given a name:

1. p>p. Gage pressure: pgage) = p — pq
2. p <p, Vacuum pressure: p(vacuum) = p, — p

This is a convenient shorthand, and one later adds (or subtracts) atmospheric pressure
to determine the absolute fluid pressure.

A typical situation is shown in Fig. 2.3. The local atmosphere is at, say, 90,000 Pa,
which might reflect a storm condition in a sea-level location or normal conditions at
an altitude of 1000 m. Thus, on this day, p, = 90,000 Pa absolute = 0 Pa gage = 0 Pa
vacuum. Suppose gage 1 in a laboratory reads p; = 120,000 Pa absolute. This value
may be reported as a gage pressure, p; = 120,000 — 90,000 = 30,000 Pa gage. (One
must also record the atmospheric pressure in the laboratory, since p, changes grad-
ually.) Suppose gage 2 reads p, = 50,000 Pa absolute. Locally, this is a vacuum
pressure and might be reported as p, = 90,000 — 50,000 = 40,000 Pa vacuum.
Occasionally, in the problems section, we will specify gage or vacuum pressure to
keep you alert to this common engineering practice. If a pressure is listed without
the modifier gage or vacuum, we assume it is absolute pressure.

If the fluid is at rest or at constant velocity, a = 0 and f,;,. = 0. Equation (2.8) for
the pressure distribution reduces to

Vp = pg (2.9)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.
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Recall from vector analysis that the vector Vp expresses the magnitude and direc-
tion of the maximum spatial rate of increase of the scalar property p. As a result, Vp
is perpendicular everywhere to surfaces of constant p. Thus Eq. (2.9) states that a
fluid in hydrostatic equilibrium will align its constant-pressure surfaces everywhere
normal to the local-gravity vector. The maximum pressure increase will be in the
direction of gravity—that is, “down.” If the fluid is a liquid, its free surface, being at
atmospheric pressure, will be normal to local gravity, or “horizontal.” You probably
knew all this before, but Eq. (2.9) is the proof of it.

In our customary coordinate system z is “up.” Thus the local-gravity vector for
small-scale problems is

g = —gk (2.10)
where g is the magnitude of local gravity, for example, 9.807 m/s>. For these coor-

dinates Eq. (2.9) has the components

ap ap ap
o 3y Py P8 Y (2.11)
the first two of which tell us that p is independent of x and y. Hence dp/dz can be

replaced by the total derivative dp/dz, and the hydrostatic condition reduces to

ap _ _
dz Y
2
or Pr— D1 = —J' vdz (2.12)
1

Equation (2.12) is the solution to the hydrostatic problem. The integration requires an
assumption about the density and gravity distribution. Gases and liquids are usually
treated differently.

We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with vertical
distance and is independent of the shape of the container. The pressure is the same
at all points on a given horizontal plane in the fluid. The pressure increases with
depth in the fluid.

An illustration of this is shown in Fig. 2.4. The free surface of the container is atmo-
spheric and forms a horizontal plane. Points a, b, ¢, and d are at equal depth in a hori-
zontal plane and are interconnected by the same fluid, water; therefore all points have
the same pressure. The same is true of points A, B, and C on the bottom, which all
have the same higher pressure than at a, b, ¢, and d. However, point D, although at
the same depth as A, B, and C, has a different pressure because it lies beneath a dif-
ferent fluid, mercury.

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

ro 2
g = 8\~ (2.13)

r
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Atmospheric pressure:

Free surface

Fig. 2.4 Hydrostatic-pressure distri-

bution. Points a, b, ¢, and d are at

equal depths in water and therefore

have identical pressures. Points A,

B, and C are also at equal depths Depth 1
in water and have identical pres-

sures higher than a, b, ¢, and d.

Point D has a different pressure

from A, B, and C because it is not

connected to them by a water path. Depth 2

Mercury

where rq is the planet radius and g, is the surface value of g. For earth, rq = 3960
statute mi =~ 6400 km. In typical engineering problems the deviation from r, extends
from the deepest ocean, about 11 km, to the atmospheric height of supersonic trans-
port operation, about 20 km. This gives a maximum variation in g of (6400/6420)7,
or 0.6 percent. We therefore neglect the variation of g in most problems.

Hydrostatic Pressure in Liquids Liquids are so nearly incompressible that we can neglect their density variation in
hydrostatics. In Example 1.6 we saw that water density increases only 4.6 percent at
the deepest part of the ocean. Its effect on hydrostatics would be about half of this,
or 2.3 percent. Thus we assume constant density in liquid hydrostatic calculations, for
which Eq. (2.12) integrates to

Liquids: P2—p1 = Y@ —2) (2.14)
_ P2 D
or 21 — 2= — — —
Y Y

We use the first form in most problems. The quantity vy is called the specifi weight
of the fluid, with dimensions of weight per unit volume; some values are tabulated in
Table 2.1. The quantity p/vy is a length called the pressure head of the fluid.

Table 2.1 Specific Weight of Some

Common Fluids Specifi weight y

at 68F = 20C

Fluid Ibf/ft N/m?*
Air (at 1 atm) 0.0752 11.8
Ethyl alcohol 49.2 7,733
SAE 30 oil 55.5 8,720
Water 62.4 9,790
Seawater 64.0 10,050
Glycerin 78.7 12,360
Carbon tetrachloride 99.1 15,570

Mercury 846 133,100




Fig. 2.5 Hydrostatic-pressure distri-
bution in oceans and atmospheres.

The Mercury Barometer
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Z
+b e pa b Yair
Air
v Free surface: Z=0, p = p,
— 0 =
l Water
8
—h p=p,+ M ater

For lakes and oceans, the coordinate system is usually chosen as in Fig. 2.5, with
z = 0 at the free surface, where p equals the surface atmospheric pressure p,. When
we introduce the reference value (py, z1) = (pa, 0), Eq. (2.14) becomes, for p at any
(negative) depth z,

Lakes and oceans: P =Ds— ¥V (2.15)

where 7 is the average specific weight of the lake or ocean. As we shall see, Eq. (2.15)
holds in the atmosphere also with an accuracy of 2 percent for heights z up to 1000 m.

EXAMPLE 2.1

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of
60 m, and the mean atmospheric pressure is 91 kPa. Estimate the absolute pressure in kPa
at this maximum depth.

Solution

o System sketch: Imagine that Fig. 2.5 is Newfound Lake, with # = 60 m and z = 0 at
the surface.

« Property values: From Table 2.1, Yyaer = 9790 N/m?>. We are given that p,es = 91 kPa.

o Solution steps: Apply Eq. (2.15) to the deepest point. Use SI units, pascals, not kilopascals:

N
Poax = Pa = 72 = 91,000 Pa = (9790 —5)(~60m) = 678.400 Pa ~ 678 kPa  Ans.

e Comments: Kilopascals are awkward. Use pascals in the formula, then convert the answer.

The simplest practical application of the hydrostatic formula (2.14) is the barometer
(Fig. 2.6), which measures atmospheric pressure. A tube is filled with mercury and
inverted while submerged in a reservoir. This causes a near vacuum in the closed upper
end because mercury has an extremely small vapor pressure at room temperatures
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py =0 N
(Mercury has a very
low vapor pressure.)
—x g =h
Py=D,
(The mercury is in
contact with the
atmosphere.) neLa
=7t
Z
Py
e z,=0
Py
Mercury
(@) (b)
Fig. 2.6 A barometer measures local absolute atmospheric pressure: (a) the height of a mercury
column is proportional to p,.,; (b) a modern portable barometer, with digital readout, uses the
resonating silicon element of Fig. 2.28¢. (Courtesy of Paul Lupke, Druck Inc.)
(0.16 Pa at 20°C). Since atmospheric pressure forces a mercury column to rise a dis-
tance h into the tube, the upper mercury surface is at zero pressure.
From Fig. 2.6, Eq. (2.20) applies with p; =0 at z; = h and p, = p, at 2, = 0:
Pa—0=—vu(0—h
or h="re (2.16)
Ym
At sea-level standard, with p, = 101,350 Pa and v,, = 133,100 N/m?> from Table 2.1,
the barometric height is # = 101,350/133,100 = 0.761 m or 761 mm. In the United
States the weather service reports this as an atmospheric “pressure” of 29.96 inHg
(inches of mercury). Mercury is used because it is the heaviest common liquid. A
water barometer would be 34 ft high.
Hydrostatic Pressure in Gases Gases are compressible, with density nearly proportional to pressure. Thus density must

be considered as a variable in Eq. (2.12) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p = pRT in Eq. (2.12):

d_p = —pP8 = _Lg
dz RT



The Standard Atmosphere
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Separate the variables and integrate between points 1 and 2:

2 2

d, d

J _pzln&: _EJ _Z (2_17)
. P D1 R 1 T

The integral over z requires an assumption about the temperature variation 7(z). One
common approximation is the isothermal atmosphere, where T = T:

8z — Zl):|

2.1
AT (2.18)

P2 = D exp{

The quantity in brackets is dimensionless. (Think that over; it must be dimensionless,
right?) Equation (2.18) is a fair approximation for earth, but actually the earth’s mean
atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

T=T,— Bz (2.19)

Here T, is sea-level temperature (absolute) and B is the lapse rate, both of which vary
somewhat from day to day.

By international agreement [1] the following standard values are assumed to apply
from 0 to 36,000 ft:

T, = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m

This lower portion of the atmosphere is called the troposphere. Introducing Eq. (2.19)
into (2.17) and integrating, we obtain the more accurate relation

Bz g/(RB) g
=pal 1 — — here —— = 5.26 (air
P=p ( ) w RB (air)

T()
) (2.20)
B7\ o1 k
p= p0<] - TZ>RB where p, = 1.2255-%, p, = 101,350 Pa
o m

in the troposphere, with z = 0 at sea level. The exponent g/(RB) is dimensionless
(again it must be) and has the standard value of 5.26 for air, with R = 287 m?/(s* - K).

The U.S. standard atmosphere [1] is sketched in Fig. 2.7. The pressure is seen to
be nearly zero at z = 30 km. For tabulated properties see Table A.6.

EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m,
using (a) the exact formula and (b) an isothermal assumption at a standard sea-level tem-
perature of 15°C. Is the isothermal approximation adequate?
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Part (a)

Part (b)

Is the Linear Formula Adequate
for Gases?

Fig. 2.7 Temperature and pressure
distribution in the U.S. standard
atmosphere. (From Ref. 1.)

Solution

Use absolute temperature in the exact formula, Eq. (2.20):

0.00650 K/m)(5000 5.26
( 288 1H61)§( m)} = (101,350 Pa)(0.8872)>%°

= 101,350(0.5328) = 54,000 Pa

P = Pa {1 -
Ans. (a)
This is the standard-pressure result given at z = 5000 m in Table A.6.

If the atmosphere were isothermal at 288.16 K, Eq. (2.18) would apply:

9.807 m/s)(5000
p=Dp, exp(—ﬁ) = (101,350 Pa) exp{ ( $)(5000 m) }

RT [287 m%(s? - K)](288.16 K)
= (101,350 Pa) exp(—0.5929) ~ 56,000 Pa Ans. (b)

This is 4 percent higher than the exact result. The isothermal formula is inaccurate in the

troposphere.

The linear approximation from Eq. (2.14), 6p = —pg &z, is satisfactory for liquids,
which are nearly incompressible. For gases, it is inaccurate unless 6z is rather small.
Problem P2.26 asks you to show, by binomial expansion of Eq. (2.20), that the error
in using constant gas density to estimate 6p from Eq. (2.14) is small if

2T,
Sz < —2% (2.21)
(n — 1B
60 60
50 — 50 —
40 — 40
= g 1.20 kPa
~ ~ /
™ v
8 30— g 30
3 3
Z =
o —4—201km 0 / Eq. (2.24)
S
in
b Eq. (2.27)
1 A 11.0km B /
10 T /Ea 226) .
T h
FOPosphere 15°C 101.33 kPa
| | | | | | | |
0 -60 —40 -20 0 +20 0 40 80 120

Temperature, °C Pressure, kPa
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Pressure Increases Downward

Fig. 2.8 Evaluating pressure
changes through a column of
multiple fluids.
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where 7, is the local absolute temperature, B is the lapse rate from Eq. (2.19), and
n = g/(RB) is the exponent in Eq. (2.20). The error is less than 1 percent if 6z < 200 m.

From the hydrostatic formula (2.14), a change in elevation z, — z; of a liquid is equiv-
alent to a change in pressure (p, — p;)/y. Thus a static column of one or more liquids
or gases can be used to measure pressure differences between two points. Such a device
is called a manometer. If multiple fluids are used, we must change the density in the
formula as we move from one fluid to another. Figure 2.8 illustrates the use of the for-
mula with a column of multiple fluids. The pressure change through each fluid is cal-
culated separately. If we wish to know the total change ps — p;, we add the succes-
sive changes p, — p1, p3 — P2s P4 — D3, and ps — py. The intermediate values of p
cancel, and we have, for the example of Fig. 2.8,

Ps = P1= Y@ = 21) — V(s — 22) — Yoz — 2) — yu(zs — ze) (2.22)

No additional simplification is possible on the right-hand side because of the different
densities. Notice that we have placed the fluids in order from the lightest
on top to the heaviest at bottom. This is the only stable configuration. If we attempt to
layer them in any other manner, the fluids will overturn and seek the stable arrangement.

The basic hydrostatic relation, Eq. (2.14), is mathematically correct but vexing to engi-
neers because it combines two negative signs to have the pressure increase downward.
When calculating hydrostatic pressure changes, engineers work instinctively by simply
having the pressure increase downward and decrease upward. If point 2 is a distance h
below point 1 in a uniform liquid, then p, = p; + pgh. In the meantime, Eq. (2.14)
remains accurate and safe if used properly. For example, Eq. (2.22) is correct as shown,
or it could be rewritten in the following “multiple downward increase” mode:

Ps=p1+ Yla — 2l + vl =zl + veln — 2l T vulze — 2l

That is, keep adding on pressure increments as you move down through the layered
fluid. A different application is a manometer, which involves both “up” and “down”
calculations.

Known pressure p,

Oil,
P,, - ]72*[71 =7p0g(zzle)

Water,
pw p3*P2=*ng(z3fzz)

Glycerin, ;
% = — Py=P3=~ P58~ 23)

Mercury, p.
= p5_p4:_ng(Z5_Z4)
Sum = p;-p,
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Fig. 2.9 Simple open manometer
for measuring p, relative to atmo-
spheric pressure.

Application: A Simple Manometer

Open, p,
N S
— P El,
2D 1
A Pa—
Jump across . .
2Py — | |———| |— p=p,atz=z influid 2

Py

Figure 2.9 shows a simple U-tube open manometer that measures the gage pressure
pa relative to the atmosphere, p,. The chamber fluid p; is separated from the atmo-
sphere by a second, heavier fluid p,, perhaps because fluid A is corrosive, or more
likely because a heavier fluid p, will keep z, small and the open tube can be shorter.

We first apply the hydrostatic formula (2.14) from A down to z;. Note that we can
then go down to the bottom of the U-tube and back up on the right side to z;, and the
pressure will be the same, p = p;. Thus we can “jump across” and then up to level z,:

Pat vilza —al = vz — 2] = P2 = Pum (2.23)

Another physical reason that we can “jump across” at section 1 is that a continuous
length of the same fluid connects these two equal elevations. The hydrostatic relation
(2.14) requires this equality as a form of Pascal’s law:

Any two points at the same elevation in a continuous mass of the same static fluid
will be at the same pressure.

This idea of jumping across to equal pressures facilitates multiple-fluid problems. It
will be inaccurate however if there are bubbles in the fluid.

EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical
application is to measure pressure change across a flow device, as shown. Derive a formula
for the pressure difference p, — p,, in terms of the system parameters in Fig. E2.3.

Flow device

— (@ b —
[}
]
pl\ h

E2.3




Fig. 2.10 A complicated multiple-

fluid manometer to relate p, to pg.

This system is not especially prac-
tical but makes a good homework
or examination problem.
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Solution

Using Eq. (2.14), start at (a), evaluate pressure changes around the U-tube, and end up
at (b):

Pa+ pigL + pigh — pgh — pigl = p,
or Pa = P» = (p2 = p1)gh Ans.

The measurement only includes /4, the manometer reading. Terms involving L drop out.
Note the appearance of the difference in densities between manometer fluid and working
fluid. It is a common student error to fail to subtract out the working fluid density p;—a
serious error if both fluids are liquids and less disastrous numerically if fluid 1 is a gas.
Academically, of course, such an error is always considered serious by fluid mechanics
instructors.

Although Example 2.3, because of its popularity in engineering experiments, is
sometimes considered to be the “manometer formula,” it is best not to memorize it
but rather to adapt Eq. (2.14) to each new multiple-fluid hydrostatics problem. For
example, Fig. 2.10 illustrates a multiple-fluid manometer problem for finding the dif-
ference in pressure between two chambers A and B. We repeatedly apply Eq. (2.14),
jumping across at equal pressures when we come to a continuous mass of the same
fluid. Thus, in Fig. 2.10, we compute four pressure differences while making three
jumps:

pa =P =(pa—p)+ (pr=p2) + (p2—p3) + (p3 — pp)
(2.24)
= @ —z2) — @ )~ ¥z z) vz~ zp)

The intermediate pressures p, , 3 cancel. It looks complicated, but really it is merely
sequential. One starts at A, goes down to 1, jumps across, goes up to 2, jumps across,
goes down to 3, jumps across, and finally goes up to B.

N\, P,

Jump across
P T T e P

P

I Py

Jump across
————— - D
Jump across

5N Tk i Ittt et B IR W

Py

Py
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2.5 Hydrostatic Forces on
Plane Surfaces

EXAMPLE 2.4

Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B
is 87 kPa, estimate the pressure at A in kPa. Assume all fluids are at 20°C. See Fig. E2.4.

SAE 30 oil Gage B

Mercury 6 cm

A
-t
5cm

Water J

flow X 11 cm

4 cm

E2.4 )

Solution

e System sketch: The system is shown in Fig. E2.4.

o Assumptions: Hydrostatic fluids, no mixing, vertical “up” in Fig. E2.4.
e Approach: Sequential use of Eq. (2.14) to go from A to B.

e Property values: From Table 2.1 or Table A.3:

Yoater = 9790N/M*;  Viereury = 133,100N/m”; v,y = 8720 N/m’

e Solution steps: Proceed from A to B, “down” then “up,” jumping across at the left mer-
cury meniscus:

pat YWlAZ|vv - 7m| Azml - 70|AZ |a = Ps
or py + (9790 N/m?)(0.05m) — (133,100 N/m?)(0.07 m) — (8720 N/m*)(0.06 m) = 87,000
or pa + 490 — 9317 — 523 = 87,000 Solve for p, = 96,350 N/m? = 96.4 kPa  Ans.

o Comments: Note that we abbreviated the units N/m? to pascals, or Pa. The intermediate
five-figure result, p, = 96,350 Pa, is unrealistic, since the data are known to only about
three significant figures.

In making these manometer calculations we have neglected the capillary height
changes due to surface tension, which were discussed in Example 1.8. These effects
cancel if there is a fluid interface, or meniscus, between similar fluids on both sides of
the U-tube. Otherwise, as in the right-hand U-tube of Fig. 2.10, a capillary correction
can be made or the effect can be made negligible by using large-bore (= 1 cm) tubes.

The design of containment structures requires computation of the hydrostatic forces
on various solid surfaces adjacent to the fluid. These forces relate to the weight of
fluid bearing on the surface. For example, a container with a flat, horizontal bottom



Fig. 2.11 Hydrostatic force and
center of pressure on an arbitrary
plane surface of area A inclined at
an angle 0 below the free surface.
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Free surface pP=r,

p— Ve
_ \
9\} e \
\
i \
P Ve \
\
hx, y) - \
7
h - \
Resultant caG pd \\
7
force: \
F= pCGA

Plan view of arbitrary plane surface

of area A, and water depth H will experience a downward bottom force F;, = yHA,.
If the surface is not horizontal, additional computations are needed to find the hori-
zontal components of the hydrostatic force.

If we neglect density changes in the fluid, Eq. (2.14) applies and the pressure on
any submerged surface varies linearly with depth. For a plane surface, the linear
stress distribution is exactly analogous to combined bending and compression of a
beam in strength-of-materials theory. The hydrostatic problem thus reduces to sim-
ple formulas involving the centroid and moments of inertia of the plate cross-
sectional area.

Figure 2.11 shows a plane panel of arbitrary shape completely submerged in a lig-
uid. The panel plane makes an arbitrary angle 6 with the horizontal free surface, so
that the depth varies over the panel surface. If / is the depth to any element area dA
of the plate, from Eq. (2.14) the pressure there is p = p, + vh.

To derive formulas involving the plate shape, establish an xy coordinate system in
the plane of the plate with the origin at its centroid, plus a dummy coordinate £ down
from the surface in the plane of the plate. Then the total hydrostatic force on one side
of the plate is given by

F = Jp dA = j(pa + yh)dA = p,A + th dA (2.25)

The remaining integral is evaluated by noticing from Fig. 2.11 that 2 = £ sin 6
and, by definition, the centroidal slant distance from the surface to the plate is

o= | £aa
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Fig. 2.12 The hydrostatic pressure
force on a plane surface is equal,
regardless of its shape, to the
resultant of the three-dimensional
linear pressure distribution on that
surface F' = pcgA.

Therefore, since 6 is constant along the plate, Eq. (2.25) becomes
F=pA+ ysinﬁjgdA = p,A + ysin 0 écGgA

Finally, unravel this by noticing that £cg sin 6 = hcg, the depth straight down from
the surface to the plate centroid. Thus

F =pA + vhcgA = (po + Yheg)A = pccA (2.26)

The force on one side of any plane submerged surface in a uniform fluid equals the
pressure at the plate centroid times the plate area, independent of the shape of the
plate or the angle 6 at which it is slanted.

Equation (2.26) can be visualized physically in Fig. 2.12 as the resultant of a lin-
ear stress distribution over the plate area. This simulates combined compression and
bending of a beam of the same cross section. It follows that the “bending” portion of
the stress causes no force if its “neutral axis” passes through the plate centroid of
area. Thus the remaining “compression” part must equal the centroid stress times the
plate area. This is the result of Eq. (2.26).

However, to balance the bending-moment portion of the stress, the resultant force
F acts not through the centroid but below it toward the high-pressure side. Its line
of action passes through the center of pressure CP of the plate, as sketched in
Fig. 2.11. To find the coordinates (xcp, Ycp), We sum moments of the elemental force
p dA about the centroid and equate to the moment of the resultant F. To compute
Ycp, We equate

Fycp = jyp dA = Jy(pa + y&sin 0) dA = 7y sin GjyfdA

Pressure distribution

/

pxy

Arbitrary
plane surface
Centroid of the plane surface of area A



Gage Pressure Formulas
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The term [ p,y dA vanishes by definition of centroidal axes. Introducing ¢ = &cg — y,
we obtain

FyCP = ysin 9<§CGJ)7 dA — Jysz) = —ysinf1,

where again [ y dA = 0 and I, is the area moment of inertia of the plate area about
its centroidal x axis, computed in the plane of the plate. Substituting for F' gives the
result

I,
Yep = —7ysin ) —= 2.27
Ycp Y PecA ( )

The negative sign in Eq. (2.27) shows that ycp is below the centroid at a deeper level
and, unlike F, depends on angle 6. If we move the plate deeper, ycp approaches the
centroid because every term in Eq. (2.27) remains constant except pcg, Which increases.

The determination of xcp is exactly similar:

Fxep = JXP dA = JX[P« + Y(écg — y)sin 6] dA

—ysin Ony dA = —ysin6 I,

where I, is the product of inertia of the plate, again computed in the plane of the
plate. Substituting for F gives

I,U‘
PccA

Xcp = —7ysin 6

(2.28)

For positive /., xcp is negative because the dominant pressure force acts in the third,
or lower left, quadrant of the panel. If I, = 0, usually implying symmetry, xcp = 0

and the center of pressure lies directly below the centroid on the y axis.

In most cases the ambient pressure p, is neglected because it acts on both sides of
the plate; for example, the other side of the plate is inside a ship or on the dry side
of a gate or dam. In this case pcg = Yhcg, and the center of pressure becomes inde-
pendent of specific weight:

I sin 6 _ L,sin6 (2.29)

F = yhecA yCP:_hGA xCP__hGA
C @

Figure 2.13 gives the area and moments of inertia of several common cross sections for
use with these formulas. Note that 6 is the angle between the plate and the horizon.
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y % A=bL A = nR?
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Fig. 2.13 Centroidal moments of / — 2 S 4R
inertia for various cross sections: ‘ g 4 g ‘ R : R ‘ 3r
(a) rectangle, (b) circle, (c) trian- ! !
gle, and (d) semicircle. () ()
EXAMPLE 2.5

The gate in Fig. E2.5a is 5 ft wide, is hinged at point B, and rests against a smooth wall at
point A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal force
P exerted by the wall at point A, and (c) the reactions at the hinge B.

Wall
Y Pa ]
Seawater:
64 Ibf/ft?
15 ft A
—
Gate
6 ft
B 0

el
E2.5a Hinge [~—8ft



Part (a)

Part (b)

Part (c)
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Solution

By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or
at elevation 3 ft above point B. The depth hcg is thus 15 — 3 = 12 ft. The gate area is
5(10) = 50 ft>. Neglect p, as acting on both sides of the gate. From Eq. (2.26) the hydro-
static force on the gate is

F = pegA = yhegA = (64 1bf/f3)(12 ft)(50 ft2) = 38,400 Ibf Ans. (a)

First we must find the center of pressure of F. A free-body diagram of the gate is shown in
Fig. E2.5b. The gate is a rectangle, hence

bL> (5 f0)(10 fo)
12 12

[,=0 and I, = = 417 ft*

The distance / from the CG to the CP is given by Eq. (2.29) since p, is neglected.

L,sind (417 ft)()
hogA (12 f6)(50 ft)

I= —yop= = 0.417 ft

A

E2.5b
The distance from point B to force F is thus 10 — / — 5 = 4.583 ft. Summing the moments
counterclockwise about B gives
PLsin 6 — F(5 — 1) = P(6 ft) — (38,400 Ibf)(4.583 ft) = 0
or P = 29,300 Ibf Ans. (b)

With F and P known, the reactions B, and B, are found by summing forces on the gate:
> F,=0=B,+ Fsinf — P = B, + 38,400 Ibf (0.6) — 29,300 Ibf
or B, = 6300 Ibf
> F.=0=B,— Fcosf = B, — 38,400 Ibf (0.8)
or B, = 30,700 bt Ans. (¢)

This example should have reviewed your knowledge of statics.
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Part (a)

Part (b)

The solution of Example 2.5 was achieved with the moment of inertia formu-

las, Eqgs. (2.29). They simplify the calculations, but one loses a physical feeling
for the forces. Let us repeat Parts (a) and (b) of Example 2.5 using a more visual
approach.

EXAMPLE 2.6

Repeat Example 2.5 to sketch the pressure distribution on plate AB, and break this distri-
bution into rectangular and triangular parts to solve for (a) the force on the plate and (b) the
center of pressure.

Solution

Point A is 9 ft deep, hence py, = yhy, = (64 Ibf/ft®)(9 ft) = 576 Ibf/ft>. Similarly, Point B
is 15 ft deep, hence pp = yhy = (64 Ibf/£t®)(15 ft) = 960 Ibf/ft>. This defines the linear
pressure distribution in Fig. E2.6. The rectangle is 576 by 10 ft by 5 ft into the paper. The
triangle is (960 — 576) = 384 Ibf/ft> X 10 ft by 5 ft. The centroid of the rectangle is 5 ft
down the plate from A. The centroid of the triangle is 6.67 ft down from A. The total force
is the rectangle force plus the triangle force:

F = (576M)(10 £6)(5 ) + <ﬁ M>(10 £6)(5 1)
- 2 2 2
= 28,800 Ibf + 9600 Ibf = 38,400 Ibf Ans. (a)
576 1bf/ft?

960 1bf/ft2

E2.6

The moments of these forces about point A are
SM, = (28,800 Ibf)(5 ft) + (9600 1bf)(6.67 ft) = 144,000 + 64,000 = 208,000 ft - Ibf

Sf _7_7_5'4]712 hence _04]7f

Comment: We obtain the same force and center of pressure as in Example 2.5 but with
more understanding. However, this approach is awkward and laborious if the plate is
not a rectangle. It would be difficult to solve Example 2.7 with the pressure distribu-

tion alone because the plate is a triangle. Thus moments of inertia can be a useful
simplification.
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EXAMPLE 2.7

A tank of oil has a right-triangular panel near the bottom, as in Fig. E2.7. Omitting p,, find
the (a) hydrostatic force and (b) CP on the panel.

2, Z

5m 0il: p = 800 kg/m?

11 m

I
|
|
|6m
|
|

E2.7 4m

Solution

Part (a) The triangle has properties given in Fig. 2.13c. The centroid is one-third up (4 m) and one-
third over (2 m) from the lower left corner, as shown. The area is

16 m)(12 m) = 36 m?
The moments of inertia are

25 _ (6m)(12 m)’

= = 4
= v 288 m
b(b — 25)[2  (6m)[6m — 2(6 m)](12 m)?
and P 72s) _(6m[6m 72( mlazm?

The depth to the centroid is hcg = 5 + 4 = 9 m; thus the hydrostatic force from Eq. (2.26) is
F = pghcgA = (800 kg/m*)(9.807 m/s%)(9 m)(36 m?)
= 2.54 X 10° (kg - m)/s* = 2.54 X 10N = 2.54 MN Ans. (a)
Part (b) The CP position is given by Eqgs. (2.29):
I,sin® (288 m*)(sin 30°)

- = —0.444
Yep = A (9 m)(36 md) m
I, sin @ (—72 m*)(sin 30°)
= 800 _ = +0.111 Ans. (b
s heA (9 m)(36 m?) m ns. (0)

The resultant force F = 2.54 MN acts through this point, which is down and to the right
of the centroid, as shown in Fig. E2.7.
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2.6 Hydrostatic Forces on
Curved Surfaces

Fig. 2.14 Computation of
hydrostatic force on a curved
surface: (a) submerged curved
surface; (b) free-body diagram of
fluid above the curved surface.

The resultant pressure force on a curved surface is most easily computed by separating
it into horizontal and vertical components. Consider the arbitrary curved surface
sketched in Fig. 2.14a. The incremental pressure forces, being normal to the local area
element, vary in direction along the surface and thus cannot be added numerically. We
could sum the separate three components of these elemental pressure forces, but it
turns out that we need not perform a laborious three-way integration.

Figure 2.14b shows a free-body diagram of the column of fluid contained in the
vertical projection above the curved surface. The desired forces Fy and Fy are
exerted by the surface on the fluid column. Other forces are shown due to fluid
weight and horizontal pressure on the vertical sides of this column. The column of
fluid must be in static equilibrium. On the upper part of the column bcde, the hor-
izontal components F; exactly balance and are not relevant to the discussion. On
the lower, irregular portion of fluid abc adjoining the surface, summation of hori-
zontal forces shows that the desired force Fp due to the curved surface is exactly
equal to the force Fy on the vertical left side of the fluid column. This left-side
force can be computed by the plane surface formula, Eq. (2.26), based on a verti-
cal projection of the area of the curved surface. This is a general rule and simpli-
fies the analysis:

The horizontal component of force on a curved surface equals the force on the
plane area formed by the projection of the curved surface onto a vertical plane nor-
mal to the component.

If there are two horizontal components, both can be computed by this scheme. Sum-
mation of vertical forces on the fluid free body then shows that

FV = Wl + W2 + Wair (230)
We can state this in words as our second general rule:

The vertical component of pressure force on a curved surface equals in magnitude
and direction the weight of the entire column of fluid, both liquid and atmosphere,
above the curved surface.

projection onto

| |

| éf |

|
Curved surface Fy—= w, =F
Fy vertical plane I |

(a) )
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Thus the calculation of Fy involves little more than finding centers of mass of a
column of fluid—perhaps a little integration if the lower portion abc in Fig. 2.14b has
a particularly vexing shape.

EXAMPLE 2.8

A dam has a parabolic shape z/zo = (x/x0)* as shown in Fig. E2.8a, with x, = 10 ft and
Zo = 24 ft. The fluid is water, y = 62.4 Ibf/ft®, and atmospheric pressure may be omitted.
Compute the forces F; and Fy on the dam and their line of action. The width of the dam
is 50 ft.

po= 0 Ibf/ft? gage

|‘7x04>

E2.8a =20 (%0)2

Solution

o System sketch: Figure E2.8b shows the various dimensions. The dam width is & = 50 ft.

e Approach: Calculate Fy and its line of action from Eqgs. (2.26) and (2.29). Calculate Fy,
and its line of action by finding the weight of fluid above the parabola and the centroid
of this weight.

* Solution steps for the horizontal component: The vertical projection of the parabola lies
along the z axis in Fig. E2.8b and is a rectangle 24 ft high and 50 ft wide. Its centroid is
halfway down, or heg = 24/2 = 12 ft. Its area is A,,; = (24 f)(50 ft) = 1200 ft>. Then,
from Eq. (2.26),

Ibf
Fu = YhcaApmej = (62.4§)(12 f)(1200 ft%) = 898,560 Ibf =~ 899 X 10° Ibf

The line of action of F; is below the centroid of A, as given by Eq. (2.29):

_ Lysin®  (1/12)(50 f0)(24 ft)* sin 90°
heGAproj (12 £t)(1200 t*)

Ycp, proj —

—4 ft

Thus Fpis 12 + 4 = 16 ft, or two-thirds of the way down from the surface (8 ft up from
the bottom).

e Comments: Note that you calculate F'; and its line of action from the vertical projec-
tion of the parabola, not from the parabola itself. Since this projection is vertical, its angle
0 = 90°.

e Solution steps for the vertical component: The vertical force Fy equals the weight of
water above the parabola. Alas, a parabolic section is not in Fig. 2.13, so we had to look
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it up in another book. The area and centroid are shown in Fig. E2.8b. The weight of this
parabolic amount of water is

Ibf\[ 2
Fy = YAuuioh = (62.4ﬁ){§ (24 fo)(10 ft)}(SO ft) = 499,200 Ibf =~ 499 X 10° Ibf

p=214ft—-— — — — — — — —
2x02 I
Are x;zo |
320 I
R '
| Fy I
I I
| I
I I
| / Parabola :
| |
0 3xg xo=10 ft

E2.8b

This force acts downward, through the centroid of the parabolic section, or at a distance
3x0/8 = 3.75 ft over from the origin, as shown in Figs. E2.8b,c. The resultant hydrostatic
force on the dam is

F = (Fg + Fy, = E ) aF E = X at ns.
(F3 212 = [(899E3 Ibf)* + (499E3 Ibf)*]"? = 1028 X 10> Ibf at\29° A

This resultant is shown in Fig. E2.8¢ and passes through a point 8 ft up and 3.75 ft over
from the origin. It strikes the dam at a point 5.43 ft over and 7.07 ft up, as shown.

e Comments: Note that entirely different formulas are used to calculate F; and Fy. The
concept of center of pressure CP is, in the writer’s opinion, stretched too far when applied
to curved surfaces.

%

8 ft

E2.8¢ 0 5.43 ft
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EXAMPLE 2.9

1|

Find an algebraic formula for the net vertical force F' on the submerged semicircular pro-
jecting structure CDE in Fig. E2.9. The structure has uniform width b into the paper. The
liquid has specific weight 7.

Solution

The net force is the difference between the upward force F; on the lower surface DE and
the downward force Fy on the upper surface CD, as shown in Fig. E2.9. The force Fy,
equals vy times the volume ABDC above surface CD. The force F; equals vy times the vol-
ume ABDEC above surface DE. The latter is clearly larger. The difference is vy times the
volume of the structure itself. Thus the net upward fluid force on the semicylinder is

F = Yfluid (volume CDE) = Yfluid g sz Ans.

This is the principle upon which the laws of buoyancy, Sec. 2.8, are founded. Note that the
result is independent of the depth of the structure and depends upon the specific weight of
the flid, not the material within the structure.

2.7 Hydrostatic Forces in The formulas for plane and curved surfaces in Secs. 2.5 and 2.6 are valid only for a
Layered Fluids fluid of uniform density. If the fluid is layered with different densities, as in Fig. 2.15,
a single formula cannot solve the problem because the slope of the linear pressure

I

v z=0
Py<P,
Fluid 1
5P
P,
Fluid 2
Zz’pZ

| p=p—-Ps8zz )
Fig. 2.15 Hydrostatic forces on a
surface immersed in a layered fluid
must be summed in separate pieces. L — Py =P =P8, )
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Part (a)

distribution changes between layers. However, the formulas apply separately to each
layer, and thus the appropriate remedy is to compute and sum the separate layer forces
and moments.

Consider the slanted plane surface immersed in a two-layer fluid in Fig. 2.15. The
slope of the pressure distribution becomes steeper as we move down into the denser
second layer. The total force on the plate does nor equal the pressure at the centroid
times the plate area, but the plate portion in each layer does satisfy the formula, so
that we can sum forces to find the total:

F=2XF = EPCGAI' (2.31)

Similarly, the centroid of the plate portion in each layer can be used to locate the cen-
ter of pressure on that portion:

_Pi§ sin 0, 1, P8 sin 0; 1,

= 2.32
pCG,.Ai e, pCGiA,» ( )

Ycp, =

These formulas locate the center of pressure of that particular F; with respect to the
centroid of that particular portion of plate in the layer, not with respect to the cen-
troid of the entire plate. The center of pressure of the total force F = 2 F; can then
be found by summing moments about some convenient point such as the surface. The
following example will illustrate this.

EXAMPLE 2.10

A tank 20 ft deep and 7 ft wide is layered with 8 ft of oil, 6 ft of water, and 4 ft of mer-
cury. Compute (a) the total hydrostatic force and () the resultant center of pressure of the
fluid on the right-hand side of the tank.

Solution

Divide the end panel into three parts as sketched in Fig. E2.10, and find the hydro-
static pressure at the centroid of each part, using the relation (2.26) in steps as in
Fig. E2.10:

Pcg, = (55.0 Ibf/ft*)(4 ft) = 220 Ibf/ft>

Dcg, = (55.0)(8) + 62.4(3) = 627 1bf/ft?

Pca, = (55.0)(8) + 62.4(6) + 846(2) = 2506 1bf/ft>

These pressures are then multiplied by the respective panel areas to find the force on each
portion:

Fy = pecAr = (220 Ibf/f)(8 fO)(7 ft) = 12,300 Ibf
Fy = pgAy = 627(6)(7) = 26,300 Ibf
F3 = pecAs = 2506(4)(7) = 70,200 Ibf

F = X F; = 108,800 Ibf Ans. (a)
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11 ft

16 ft

E2.10

Equations (2.32) can be used to locate the CP of each force F;, noting that 6 = 90° and
sin @ = 1 for all parts. The moments of inertia are I,, = (7 ft)(8 ft>/12 = 298.7 ft, I =
7(6°/12 = 126.0 ft*, and I, = 7(4)*/12 = 37.3 ft*. The centers of pressure are thus at

pigl,,  (55.0 Ibf/ft))(298.7 ft*)

_ —133ft
R F 12,300 Ibf
62.4(126.0) 846(37.3)
= e o _030f = 220D 0451
Ve, 26,300 0.301t  ye, 70,200 0451t

This locates zcp, = —4 — 1.33 = =533 ft, zep, = —11 — 030 = —11.30 ft, and zcp, =

—16 — 0.45 = —16.45 ft. Summing moments about the surface then gives
X7 iZcp, = Fzcp
or 12,300(—5.33) + 26,300(—11.30) + 70,200(—16.45) = 108,800zcp
1,518,000
or Zep = TT108.800 13.95 ft Ans. (b)

The center of pressure of the total resultant force on the right side of the tank lies 13.95 ft
below the surface.

The same principles used to compute hydrostatic forces on surfaces can be applied to
the net pressure force on a completely submerged or floating body. The results are
the two laws of buoyancy discovered by Archimedes in the third century B.C.:

1.

A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces.

A floating body displaces its own weight in the fluid in which it floats.
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Fig. 2.16 Two different approaches
to the buoyant force on an arbitrary
immersed body: (a) forces on
upper and lower curved surfaces;
(b) summation of elemental
vertical-pressure forces.

> Fy (D Surface 12 Horizontal
1 elemental
area dAy
1~ 2
Surface v
2
F,(2) Py

(@) ()

Archimedes (287-212 B.C.) was born and lived in the Greek city-state of Syracuse,
on what is now the island of Sicily. He was a brilliant mathematician and engineer,
two millennia ahead of his time. He calculated an accurate value for pi and approx-
imated areas and volumes of various bodies by summing elemental shapes. In other
words, he invented the integral calculus. He developed levers, pulleys, catapults, and
a screw pump. Archimedes was the first to write large numbers as powers of 10, avoid-
ing Roman numerals. And he deduced the principles of buoyancy, which we study
here, when he realized how light he was when sitting in a bathtub.

Archimedes’ two laws are easily derived by referring to Fig. 2.16. In Fig. 2.16a,
the body lies between an upper curved surface 1 and a lower curved surface 2. From
Eq. (2.30) for vertical force, the body experiences a net upward force

Fp=Fy(2) = Fy(1)
= (fluid weight above 2) — (fluid weight above 1)

= weight of fluid equivalent to body volume (2.33)
Alternatively, from Fig. 2.16b, we can sum the vertical forces on elemental vertical
slices through the immersed body:

FB:J
b

These are identical results and equivalent to Archimedes’ law 1.

Equation (2.34) assumes that the fluid has uniform specific weight. The line of
action of the buoyant force passes through the center of volume of the displaced bodys;
that is, its center of mass computed as if it had uniform density. This point through
which Fp acts is called the center of buoyancy, commonly labeled B or CB on a
drawing. Of course, the point B may or may not correspond to the actual center of
mass of the body’s own material, which may have variable density.

(p, = p)dA, = —'}/J(z2 — z,) dA,, = (y)(body volume) (2.34)

ody



Fig. 2.17 Static equilibrium of a
floating body.
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Neglect the displaced air up here.

(Displaced volume) X ( 7y of fluid) = body weight

Equation (2.34) can be generalized to a layered fluid (LF) by summing the weights
of each layer of density p; displaced by the immersed body:

(Fg)r = > pig(displaced volume), (2.35)

Each displaced layer would have its own center of volume, and one would have to
sum moments of the incremental buoyant forces to find the center of buoyancy of the
immersed body.

Since liquids are relatively heavy, we are conscious of their buoyant forces, but
gases also exert buoyancy on any body immersed in them. For example, human beings
have an average specific weight of about 60 Ibf/ft>. We may record the weight of a
person as 180 Ibf and thus estimate the person’s total volume as 3.0 ft*. However, in
so doing we are neglecting the buoyant force of the air surrounding the person. At
standard conditions, the specific weight of air is 0.0763 Ibf/ft’; hence the buoyant
force is approximately 0.23 1bf. If measured in a vacuum, the person would weigh
about 0.23 1bf more. For balloons and blimps the buoyant force of air, instead of being
negligible, is the controlling factor in the design. Also, many flow phenomena, such
as natural convection of heat and vertical mixing in the ocean, are strongly depend-
ent on seemingly small buoyant forces.

Floating bodies are a special case; only a portion of the body is submerged, with the
remainder poking up out of the free surface. This is illustrated in Fig. 2.17, where the
shaded portion is the displaced volume. Equation (2.34) is modified to apply to this
smaller volume:

Fp = (y)(displaced volume) = floating-body weight (2.36)

Not only does the buoyant force equal the body weight, but also they are collinear
since there can be no net moments for static equilibrium. Equation (2.36) is the math-
ematical equivalent of Archimedes’ law 2, previously stated.

EXAMPLE 2.11

A block of concrete weighs 100 1bf in air and “weighs” only 60 Ibf when immersed in fresh
water (62.4 1bf/ft?). What is the average specific weight of the block?
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AAAAAAAANA M

60 Ibf

W =100 Ibf
E2.11

Stability

Solution

A free-body diagram of the submerged block (see Fig. E2.11) shows a balance between the
apparent weight, the buoyant force, and the actual weight:

SF,=0=60+ Fy — 100
oL Fy = 40 Ibf = (62.4 Ibf/ft)(block volume, ft*)

Solving gives the volume of the block as 40/62.4 = 0.641 ft>. Therefore the specific weight
of the block is

100 1bf

= = 156 Ibf/ft? Ans.
ook = g eqrgp 100 1oF s

Occasionally, a body will have exactly the right weight and volume for its ratio to
equal the specific weight of the fluid. If so, the body will be neutrally buoyant and will
remain at rest at any point where it is immersed in the fluid. Small neutrally buoyant
particles are sometimes used in flow visualization, and a neutrally buoyant body called
a Swallow flat [2] is used to track oceanographic currents. A submarine can achieve
positive, neutral, or negative buoyancy by pumping water in or out of its ballast tanks.

A floating body as in Fig. 2.17 may not approve of the position in which it is floating.
If so, it will overturn at the first opportunity and is said to be statically unstable, like a
pencil balanced on its point. The least disturbance will cause it to seek another equilib-
rium position that is stable. Engineers must design to avoid floating instability. The only
way to tell for sure whether a floating position is stable is to “disturb” the body a slight
amount mathematically and see whether it develops a restoring moment that will return
it to its original position. If so, it is stable; if not, unstable. Such calculations for arbitrary
floating bodies have been honed to a fine art by naval architects [3], but we can at least
outline the basic principle of the static stability calculation. Figure 2.18 illustrates the
computation for the usual case of a symmetric floating body. The steps are as follows:

1. The basic floating position is calculated from Eq. (2.36). The body’s center of
mass G and center of buoyancy B are computed.

2. The body is tilted a small angle A6, and a new waterline is established for the
body to float at this angle. The new position B" of the center of buoyancy is cal-
culated. A vertical line drawn upward from B’ intersects the line of symmetry at
a point M, called the metacenter, which is independent of A for small angles.

3. If point M is above G (that is, if the metacentric height MG is positive), a
restoring moment is present and the original position is stable. If M is below
G (negative MG), the body is unstable and will overturn if disturbed. Stability
increases with increasing MG.

Thus the metacentric height is a property of the cross section for the given weight, and
its value gives an indication of the stability of the body. For a body of varying cross sec-
tion and draft, such as a ship, the computation of the metacenter can be very involved.



Fig. 2.18 Calculation of the meta-
center M of the floating body
shown in (a). Tilt the body a small
angle Af. Either (b) B’ moves far
out (point M above G denotes
stability); or (¢) B' moves slightly
(point M below G denotes
instability).

Stability Related to Waterline
Area

Fig. 2.19 A floating body tilted
through a small angle 6. The
movement X of the center of buoy-
ancy B is related to the waterline
area moment of inertia.
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Naval architects [3] have developed the general stability concepts from Fig. 2.18 into
a simple computation involving the area moment of inertia of the waterline area about
the axis of tilt. The derivation assumes that the body has a smooth shape variation
(no discontinuities) near the waterline and is derived from Fig. 2.19.

The y axis of the body is assumed to be a line of symmetry. Tilting the body a
small angle 6 then submerges the small wedge Obd and uncovers an equal wedge
¢Oa, as shown. The new position B" of the center of buoyancy is calculated as the
centroid of the submerged portion aObde of the body:

dev%— dev— dev=0+fx(LdA)—Jx(LdA)

X Vaobde =
cOdea Obd cOa Obd cOa
=0+ Jx L (x tan 6 dx) —J'xL (—x tan 6 dx) = tan Osz dA yertine = 1o tan 0
Obd cOa waterline
. Variable-width
Original L(x) into paper
waterline pap

area dA = xtan 6 dx

Z

Tilted floating body
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where I, is the area moment of inertia of the waterline footprint of the body about
its tilt axis O. The first integral vanishes because of the symmetry of the original
submerged portion cOdea. The remaining two “wedge” integrals combine into /,
when we notice that L dx equals an element of waterline area. Thus we determine
the desired distance from M to B:

X — I, e S —
= MB = = MG + GB or MG = — — GB

tan 6 Usubmcrgcd Vaub (2 37)

The engineer would determine the distance from G to B from the basic shape and design
of the floating body and then make the calculation of I, and the submerged volume
vaup. If the metacentric height MG is positive, the body is stable for small disturbances.
Note that if GB is negative, that is, B is above G, the body is always stable.

EXAMPLE 2.12

A barge has a uniform rectangular cross section of width 2L and vertical draft of height H, as
in Fig. E2.12. Determine (a) the metacentric height for a small tilt angle and (b) the range of
ratio L/H for which the barge is statically stable if G is exactly at the waterline as shown.

@
\V4 r\/ |
— N\
= 0
> B H
E2.12 L L | 1

Solution

If the barge has length b into the paper, the waterline area, relative to tilt axis O, has a base
b and a height 2L; therefore, I, = b(2L)*/12. Meanwhile, vy, = 2LbH. Equation (2.37)
predicts

I, —— 812 H L* H

~GB = LRy N Ans.
Vo 2[bH 2 3H 2 ns. (@)

MG =

The barge can thus be stable only if
L*>3H2 or 2L>245H Ans. (b)

The wider the barge relative to its draft, the more stable it is. Lowering G would help also.

Even an expert will have difficulty determining the floating stability of a buoyant
body of irregular shape. Such bodies may have two or more stable positions. For



Fig. 2.20 A North Atlantic iceberg
formed by calving from a Greenland
glacier. These, and their even larger
Antarctic sisters, are the largest
floating bodies in the world. Note
the evidence of further calving
fractures on the front surface.
(@Corbis.)

2.9 Pressure Distribution in
Rigid-Body Motion
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example, a ship may float the way we like it, so that we can sit on the deck, or it
may float upside down (capsized). An interesting mathematical approach to floating
stability is given in Ref. 11. The author of this reference points out that even simple
shapes, such as a cube of uniform density, may have a great many stable floating
orientations, not necessarily symmetric. Homogeneous circular cylinders can float
with the axis of symmetry tilted from the vertical.

Floating instability occurs in nature. Fish generally swim with their planes of sym-
metry vertical. After death, this position is unstable and they float with their flat sides
up. Giant icebergs may overturn after becoming unstable when their shapes change
due to underwater melting. Iceberg overturning is a dramatic, rarely seen event.

Figure 2.20 shows a typical North Atlantic iceberg formed by calving from a
Greenland glacier that protruded into the ocean. The exposed surface is rough, indi-
cating that it has undergone further calving. Icebergs are frozen fresh, bubbly, glacial
water of average density 900 kg/m’. Thus, when an iceberg is floating in seawater,
whose average density is 1025 kg/m?, approximately 900/1025, or seven-eighths, of
its volume lies below the water.

In rigid-body motion, all particles are in combined translation and rotation, and there
is no relative motion between particles. With no relative motion, there are no strains
or strain rates, so that the viscous term in Eq. (2.8) vanishes, leaving a balance
between pressure, gravity, and particle acceleration:

Vp = p(g — a) (2.38)

The pressure gradient acts in the direction g¢ — a, and lines of constant pressure
(including the free surface, if any) are perpendicular to this direction. The general
case of combined translation and rotation of a rigid body is discussed in Chap. 3,
Fig. 3.11.

Fluids can rarely move in rigid-body motion unless restrained by confining walls
for a long time. For example, suppose a tank of water is in a car that starts a constant
acceleration. The water in the tank would begin to slosh about, and that sloshing
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Fig. 2.21 Tilting of constant-
pressure surfaces in a tank of
liquid in rigid-body acceleration.

Uniform Linear Acceleration

Fluid
at rest

would damp out very slowly until finally the particles of water would be in approx-
imately rigid-body acceleration. This would take so long that the car would have
reached hypersonic speeds. Nevertheless, we can at least discuss the pressure dis-
tribution in a tank of rigidly accelerating water.

In the case of uniform rigid-body acceleration, Eq. (2.38) applies, a having the same
magnitude and direction for all particles. With reference to Fig. 2.21, the parallelo-
gram sum of g and —a gives the direction of the pressure gradient or greatest rate of
increase of p. The surfaces of constant pressure must be perpendicular to this and are
thus tilted at a downward angle 6 such that

—1 ax
0 = tan (2.39)
g ta
One of these tilted lines is the free surface, which is found by the requirement that
the fluid retain its volume unless it spills out. The rate of increase of pressure in the
direction g — a is greater than in ordinary hydrostatics and is given by

d _

.= PG where G = [az + (g + a)*]"? (2.40)

These results are independent of the size or shape of the container as long as the fluid
is continuously connected throughout the container.

EXAMPLE 2.13

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s”.
The mug is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest.
(a) Assuming rigid-body acceleration of the coffee, determine whether it will spill out of
the mug. (b) Calculate the gage pressure in the corner at point A if the density of coffee
is 1010 kg/m>.
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Solution

o System sketch: Figure E2.13 shows the coffee tilted during the acceleration.

N |

J o -f___ W
X
|
7 cm
— aX=7m/s2
A |
R\ S/
E2.13 L3 cm —>

o Assumptions: Rigid-body horizontal acceleration, a, = 7 m/s>. Symmetric coffee cup.

« Property values: Density of coffee given as 1010 kg/m°.

e Approach (a): Determine the angle of tilt from the known acceleration, then find the
height rise.

e Solution steps: From Eq. (2.39), the angle of tilt is given by

a 7.0 m/s’
f=tan ' = =tan '——— = 35.5°

g 9.81 m/s”
If the mug is symmetric, the tilted surface will pass through the center point of the rest
position, as shown in Fig. E2.13. Then the rear side of the coffee free surface will rise an
amount Az given by

Az = (3 cm)(tan 35.5°) = 2.14 cm < 3 cm therefore no spilling  Ans. (a)

e Comment (a): This solution neglects sloshing, which might occur if the start-up is
uneven.

e Approach (b): The pressure at A can be computed from Eq. (2.40), using the perpen-
dicular distance As from the surface to A. When at rest, py = pghese = (1010 kg/m>)
(9.81 m/sz)(0.07 m) = 694 Pa. When accelerating,

k

pa = pG As = (1010—%){\/ (9.81)% + (7.0)*|[(0.07 + 0.0214) cos 35.5°] =~ 906 Pa Ans. (b)
m

e Comment (b): The acceleration has increased the pressure at A by 31 percent. Think

about this alternative: why does it work? Since a, = 0, we may proceed vertically down
the left side to compute

Pa = pgzeur — z4) = (1010 kg/m)(9.81 m/s>)(0.0214 + 0.07 m) = 906 Pa
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Fig. 2.22 Development of parabo-
loid constant-pressure surfaces in a
fluid in rigid-body rotation. The
dashed line along the direction of
maximum pressure increase is an
exponential curve.

Rigid-Body Rotation

__ Still-water
level

e

As a second special case, consider rotation of the fluid about the z axis without any
translation, as sketched in Fig. 2.22. We assume that the container has been rotating
long enough at constant €} for the fluid to have attained rigid-body rotation. The fluid
acceleration will then be a centripetal term. In the coordinates of Fig. 2.22, the angular-
velocity and position vectors are given by

Q=kQ ry=ir (2.41)
Then the acceleration is given by
Q X (Q X rg) = —rQ%, (2.42)
as marked in the figure, and Eq. (2.38) for the force balance becomes
=i L4 K = gl — a) = pl—gk + 1Y)

Equating like components, we find the pressure field by solving two first-order partial
differential equations:

E) 9
Lo -, (2.43)
ar 0z

The right-hand sides of (2.43) are known functions of r and z. One can proceed as
follows: Integrate the first equation “partially,” holding z constant, with respect to r.
The result is

p =3pr Q0 + () (2.44)

where the “constant” of integration is actually a function f(z).> Now differentiate this
with respect to z and compare with the second relation of (2.43):

P
ap =0+f@=—y
Z

’This is because f(z) vanishes when differentiated with respect to 7. If you don’t see this, you should
review your calculus.



Fig. 2.23 Determining the free-
surface position for rotation of a
cylinder of fluid about its central
axis.
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where C is a constant. Thus Eq. (2.44) now becomes
p = const — yz + 3pr’Q? (2.45)

This is the pressure distribution in the fluid. The value of C is found by specifying
the pressure at one point. If p = pq at (r, z) = (0, 0), then C = p,. The final desired
distribution is

p =Dy~ 2+ 270 (2.46)

The pressure is linear in z and parabolic in r. If we wish to plot a constant-pressure
surface, say, p = p;, Eq. (2.45) becomes
2
S el T U (2.47)
Y 2g
Thus the surfaces are paraboloids of revolution, concave upward, with their minimum
points on the axis of rotation. Some examples are sketched in Fig. 2.22.

As in the previous example of linear acceleration, the position of the free surface
is found by conserving the volume of fluid. For a noncircular container with the axis
of rotation off-center, as in Fig. 2.22, a lot of laborious mensuration is required, and
a single problem will take you all weekend. However, the calculation is easy for a
cylinder rotating about its central axis, as in Fig. 2.23. Since the volume of a
paraboloid is one-half the base area times its height, the still-water level is exactly
halfway between the high and low points of the free surface. The center of the fluid
drops an amount /2 = Q”R*/(4g), and the edges rise an equal amount.

EXAMPLE 2.14

The coffee cup in Example 2.13 is removed from the drag racer, placed on a turntable, and
rotated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity
that will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point
A for this condition.
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Solution

im

SN =—
NN o

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal
the distance //2 in Fig. 2.23. Thus

h i Q’R*  0%0.03 m)?
L — 0@Bm = =
2 4g 4(9.81 m/s?)
Solving, we obtain
0% = 1308 or Q) = 36.2 rad/s = 345 r/min Ans. (a)

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bot-
tom of the free-surface depression, as shown in Fig. E2.14. The gage pressure here is pg = 0,
and point A is at (r, z) = (3 cm, —4 cm). Equation (2.46) can then be evaluated:

ps =0 — (1010 kg/m?)(9.81 m/s*)(—0.04 m)
+ 3(1010 kg/m*)(0.03 m)*(1308 rad*/s?)
= 396 N/m?> + 594 N/m?> = 990 Pa Ans. (b)

This is about 43 percent greater than the still-water pressure p, = 694 Pa.

Here, as in the linear acceleration case, it should be emphasized that the parab-
oloid pressure distribution (2.46) sets up in any fluid under rigid-body rotation,
regardless of the shape or size of the container. The container may even be closed
and filled with fluid. It is only necessary that the fluid be continuously intercon-
nected throughout the container. The following example will illustrate a peculiar
case in which one can visualize an imaginary free surface extending outside the
walls of the container.

EXAMPLE 2.15

A U-tube with a radius of 10 in and containing mercury to a height of 30 in is rotated about
its center at 180 r/min until a rigid-body mode is achieved. The diameter of the tubing is
negligible. Atmospheric pressure is 2116 Ibf/ft>. Find the pressure at point A in the rotating
condition. See Fig. E2.15.

Solution

Convert the angular velocity to radians per second:

. 2arad/r
Q) = (180 r/min) ———— = 18.85 rad/s
60 s/min

From Table 2.1 we find for mercury that y = 846 Ibf/ft® and hence p = 846/32.2 = 26.3
slugs/ft’. At this high rotation rate, the free surface will slant upward at a fierce angle [about

84°; check this from Eq. (2.47)], but the tubing is so thin that the free surface will remain
at approximately the same 30-in height, point B. Placing our origin of coordinates at this
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height, we can calculate the constant C in Eq. (2.45) from the condition pp = 2116 Ibf/ft?
at (r, z) = (10 in, 0):

pp = 2116 Ibf/f> = C — 0 + $(26.3 slugs/ft})(32 ft)*(18.85 rad/s)?
or C = 2116 — 3245 = —1129 Ibf/ft*
We then obtain p, by evaluating Eq. (2.46) at (r, z) = (0, —30 in):
pa = —1129 — (846 Ibf/f})(—32 ft) = —1129 + 2115 = 986 Ibf/ft> Ans.

This is less than atmospheric pressure, and we can see why if we follow the free-surface
paraboloid down from point B along the dashed line in the figure. It will cross the hori-
zontal portion of the U-tube (where p will be atmospheric) and fall below point A. From
Fig. 2.23 the actual drop from point B will be

QR (188519’
2g 2(32.2)

h

= 3.83ft = 46in

Thus p, is about 16 inHg below atmospheric pressure, or about 15(846) = 1128 Ibf/ft> below
P. = 2116 Ibf/ft*, which checks with the answer above. When the tube is at rest,
pa = 2116 — 846(—3) = 4231 Ibf/ft>

Hence rotation has reduced the pressure at point A by 77 percent. Further rotation can reduce
Pa to near-zero pressure, and cavitation can occur.

An interesting by-product of this analysis for rigid-body rotation is that the lines
everywhere parallel to the pressure gradient form a family of curved surfaces, as
sketched in Fig. 2.22. They are everywhere orthogonal to the constant-pressure sur-
faces, and hence their slope is the negative inverse of the slope computed from
Eq. (2.47):

dz| 1 R
Qg

drlaL (dz/dr)

'p = const

where GL stands for gradient line

dz g
—_—= —— 2.48
or o O (2.48)

Separating the variables and integrating, we find the equation of the pressure-gradient
surfaces:

92
r=¢ exp<—?z> (2.49)

Notice that this result and Eq. (2.47) are independent of the density of the fluid. In
the absence of friction and Coriolis effects, Eq. (2.49) defines the lines along which
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Fig. 2.24 Experimental demonstra-
tion with buoyant streamers of the
fluid force field in rigid-body rota-
tion: (fop) fluid at rest (streamers
hang vertically upward); (bottom)
rigid-body rotation (streamers are
aligned with the direction of maxi-
mum pressure gradient). (€The
American Association of Physics
Teachers. Reprinted with
permission from The Apparent
Field of Gravity in a Rotating
Fluid System’by R. lan Fletcher.
American Journal of Physics

vol. 40, pp. 959965, July 1972.)
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the apparent net gravitational field would act on a particle. Depending on its density,
a small particle or bubble would tend to rise or fall in the fluid along these expo-
nential lines, as demonstrated experimentally in Ref. 5. Also, buoyant streamers
would align themselves with these exponential lines, thus avoiding any stress other
than pure tension. Figure 2.24 shows the configuration of such streamers before and
during rotation.

Pressure is a derived property. It is the force per unit area as related to fluid
molecular bombardment of a surface. Thus most pressure instruments only infer
the pressure by calibration with a primary device such as a deadweight piston
tester. There are many such instruments, for both a static fluid and a moving stream.
The instrumentation texts in Refs. 7 to 10, 12, 13, and 1617 list over 20 designs
for pressure measurement instruments. These instruments may be grouped into four
categories:

1. Gravity-based: barometer, manometer, deadweight piston.

2. Elastic deformation: bourdon tube (metal and quartz), diaphragm, bellows,
strain-gage, optical beam displacement.

3. Gas behavior: gas compression (McLeod gage), thermal conductance (Pirani
gage), molecular impact (Knudsen gage), ionization, thermal conductivity, air
piston.

4. Electric output: resistance (Bridgman wire gage), diffused strain gage,
capacitative, piezoelectric, potentiometric, magnetic inductance, magnetic
reluctance, linear variable differential transformer (LVDT), resonant
frequency.

5. Luminescent coatings for surface pressures [15].

The gas-behavior gages are mostly special-purpose instruments used for certain sci-
entific experiments. The deadweight tester is the instrument used most often for
calibrations; for example, it is used by the U.S. National Institute for Standards and
Technology (NIST). The barometer is described in Fig. 2.6.

The manometer, analyzed in Sec. 2.4, is a simple and inexpensive hydrostatic-
principle device with no moving parts except the liquid column itself. Manometer
measurements must not disturb the flow. The best way to do this is to take the meas-
urement through a static hole in the wall of the flow, as illustrated in Fig. 2.25a. The
hole should be normal to the wall, and burrs should be avoided. If the hole is small
enough (typically 1-mm diameter), there will be no flow into the measuring tube
once the pressure has adjusted to a steady value. Thus the flow is almost undisturbed.
An oscillating flow pressure, however, can cause a large error due to possible
dynamic response of the tubing. Other devices of smaller dimensions are used for
dynamic-pressure measurements. The manometer in Fig. 2.25a measures the gage
pressure p;. The instrument in Fig. 2.25b is a digital differential manometer, which
can measure the difference between two different points in the flow, with stated accu-
racy of 0.1 percent of full scale. The world of instrumentation is moving quickly
toward digital readings.
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Fig. 2.25 Two types of accurate
manometers for precise measure-
ments: (a) tilted tube with
eyepiece; (b) a capacitive-type dig-
ital manometer of rated accuracy
*0.1 percent. (Courtesy of Dwyer
Instruments, Inc.)

Fig. 2.26 Schematic of a bourdon-
tube device for mechanical meas-
urement of high pressures.

Flow B B
— B B
——

——
— P
1L

(a) (b)

In category 2, elastic-deformation instruments, a popular, inexpensive, and reliable
device is the bourdon tube, sketched in Fig. 2.26. When pressurized internally, a
curved tube with flattened cross section will deflect outward. The deflection can be
measured by a linkage attached to a calibrated dial pointer, as shown. Or the deflec-
tion can be used to drive electric-output sensors, such as a variable transformer. Sim-
ilarly, a membrane or diaphragm will deflect under pressure and can either be sensed
directly or used to drive another sensor.

An interesting variation of Fig. 2.26 is the fused-quartz, force-balanced bourdon
tube, shown in Fig. 2.27, whose spiral-tube deflection is sensed optically and returned
to a zero reference state by a magnetic element whose output is proportional to the

O

Section AA

Bourdon
tube

i \
Pointer for \ \ Flattened tube deflects

\ \\ outward under pressure

Vo

\

Linkage

High pressure



Fig. 2.27 The fused-quartz, force-
balanced bourdon tube is the most
accurate pressure sensor used in
commercial applications today.
(Courtesy of Ruska Instrument
Corporation, Houston, TX.)
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fluid pressure. The fused-quartz, force-balanced bourdon tube is reported to be one of
the most accurate pressure sensors ever devised, with uncertainty on the order of
*0.003 percent.

The quartz gages, both the bourdon type and the resonant type, are expensive but
extremely accurate, stable, and reliable [14]. They are often used for deep-ocean
pressure measurements, which detect long waves and tsunami activity over extensive
time periods.

The last category, electric-output sensors, is extremely important in engineering
because the data can be stored on computers and freely manipulated, plotted, and ana-
lyzed. Three examples are shown in Fig. 2.28, the first being the capacitive sensor in
Fig. 2.28a. The differential pressure deflects the silicon diaphragm and changes the
capacitance of the liquid in the cavity. Note that the cavity has spherical end caps to
prevent overpressure damage. In the second type, Fig. 2.28b, strain gages and other
sensors are chemically diffused or etched onto a chip, which is stressed by the applied
pressure. Finally, in Fig. 2.28¢, a micromachined silicon sensor is arranged to deform
under pressure such that its natural vibration frequency is proportional to the pressure.
An oscillator excites the element’s resonant frequency and converts it into appropri-
ate pressure units.

Another kind of dynamic electric-output sensor is the piezoelectric transducer,
shown in Fig. 2.29. The sensing elements are thin layers of quartz, which generate
an electric charge when subjected to stress. The design in Fig. 2.29 is flush-mounted
on a solid surface and can sense rapidly varying pressures, such as blast waves. Other
designs are of the cavity type. This type of sensor primarily detects transient pres-
sures, not steady stress, but if highly insulated can also be used for short-term static
events. Note also that it measures gage pressure—that is, it detects only a change
from ambient conditions.
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(Courtesy of Johnson-Yokogawa
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(Courtesy of PCB Piezotronics, Inc.
Depew, New York.)
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Summary This chapter has been devoted entirely to the computation of pressure distributions
and the resulting forces and moments in a static fluid or a fluid with a known veloc-
ity field. All hydrostatic (Secs. 2.3 to 2.8) and rigid-body (Sec. 2.9) problems are
solved in this manner and are classic cases that every student should understand. In
arbitrary viscous flows, both pressure and velocity are unknowns and are solved
together as a system of equations in the chapters that follow.

Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are indicated with an asterisk,
as in Prob. 2.9. Problems labeled with an EES icon (for
example, Prob. 2.62) will benefit from the use of the Engi-
neering Equation Solver (EES), while problems labeled with a
computer icon may require the use of a computer. The
standard end-of-chapter problems 2.1 to 2.159 (categorized in
the problem distribution) are followed by word problems W2.1
to W2.9, fundamentals of engineering exam problems FE2.1 to
FE2.10, comprehensive problems C2.1 to C2.9, and design
projects D2.1 to D2.3.

Problem Distribution

Section Topic Problems
2.1,2.2 Stresses; pressure gradient; gage pressure 2.1-2.6
2.3 Hydrostatic pressure; barometers 2.7-2.23

2.3 The atmosphere 2.24-2.29

2.4
2.5
2.6
2.7
2.8
2.8
2.9
29
2.10

Manometers; multiple fluids 2.30-2.47
Forces on plane surfaces 2.48-2.80
Forces on curved surfaces 2.81-2.100
Forces in layered fluids 2.101-2.102
Buoyancy; Archimedes’ principles 2.103-2.126
Stability of floating bodies 2.127-2.136
Uniform acceleration 2.137-2.151
Rigid-body rotation 2.152-2.159
Pressure measurements None

Stresses; pressure gradient; gage pressure

P2.1

For the two-dimensional stress field shown in Fig. P2.1 it
is found that

o = 3000 b/ o, = 2000 Ibf/f o, = 500 Ibf/ft’

Find the shear and normal stresses (in 1bf/ft?) acting on
plane AA cutting through the element at a 30° angle as
shown.
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P2.2

P2.3

P24

P2.5

ny
—_— Oyx =
Xy
<
~
~
> ~
Oux ~ N (O
o/~ A
N
30°(
ny
= ~—
(5),)(
P21 Gy

For the two-dimensional stress field shown in Fig. P2.1
suppose that

2000 Ibf/ft> a,, = 3000 Ibf/ft>  o,(AA) = 2500 Ibf/ft>

Compute (a) the shear stress o, and (b) the shear stress

on plane AA.
A vertical, clean, glass piezometer tube has an inside
diameter of 1 mm. When pressure is applied, water at
20°C rises into the tube to a height of 25 cm. After cor-
recting for surface tension, estimate the applied pressure
in Pa.
Pressure gages, such as the Bourdon gage in Fig. P2.4,
are calibrated with a deadweight piston. If the Bourdon
gage is designed to rotate the pointer 10 degrees for every
2 psig of internal pressure, how many degrees does the
pointer rotate if the piston and weight together total 44
newtons?

\
\
07, Bourdon
L gage
2 cm .
diameter ol
P2.4

Denver, Colorado, has an average altitude of 5300 ft.
On a standard day (Table A.6), pressure gage A in a
laboratory experiment reads 83 kPa and gage B reads
105 kPa. Express these readings in gage pressure or
vacuum pressure (Pa), whichever is appropriate.

P2.6

Any pressure reading can be expressed as a length or
head, h = plpg. What is standard sea-level pressure
expressed in (a) ft of glycerin, (b) inHg, (c) m of water,
and (d) mm of ethanol? Assume all fluids are at 20°C.

Hydrostatic pressure; barometers

pP2.7

P2.8

P2.9

P2.10

P2.11

P2.12

La Paz, Bolivia is at an altitude of approximately
12,000 ft. Assume a standard atmosphere. How high
would the liquid rise in a methanol barometer, assumed
at 20°C?

Hint: Don’t forget the vapor pressure.

A diamond mine is two miles below sea level. (a) Esti-
mate the air pressure at this depth. (b) If a barometer,
accurate to 1 mm of mercury, is carried into this mine,
how accurately can it estimate the depth of the mine? List
your assumptions carefully.

A storage tank, 26 ft in diameter and 36 ft high, is
fled with SAE 30W oil at 20°C. ( a) What is the gage
pressure, in 1bf/in?, at the bottom of the tank? (b) How does
your result in (a) change if the tank diameter is reduced to
15 ft? (c) Repeat (a) if leakage has caused a layer of 5 ft
of water to rest at the bottom of the (full) tank.

A closed tank contains 1.5 m of SAE 30 oil, 1 m of water,
20 cm of mercury, and an air space on top, all at 20°C.
The absolute pressure at the bottom of the tank is 60 kPa.
What is the pressure in the air space?

In Fig. P2.11, pressure gage A reads 1.5 kPa (gage).
The fluids are at 20°C. Determine the elevations z, in
meters, of the liquid levels in the open piezometer tubes

B and C.
A
| soc
2m Air
I.5m Gasoline
Im Glycerin I_/—
P21 =0

In Fig. P2.12 the tank contains water and immiscible
oil at 20°C. What is & in cm if the density of the oil is
898 kg/m’?
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- 15 Ibf/in® abs
h |:/‘ E ;A
Air 2 ft
: Vv
12 cm 0il =
- 1 ft
- _8_ a Water o %B
cm 1ft
P2.12 — g
P2.13 In Fig. P2.13 the 20°C water and gasoline surfaces are Water 2 ft
open to the atmosphere and at the same elevation. What
is the height £ of the third liquid in the right leg? P2.15 ¢
— z g P2.16 If the absolute pressure at the interface between water and
mercury in Fig. P2.16 is 93 kPa, what, in 1bf/fe?, is (a) the
. pressure at the surface and (b) the pressure at the bottom
Gasoline f the container?
1.5m Water 0 ’
h
Im Water 28cm
Liquid, SG = 1.60
P2.13 75 BNy
P2.14 For the three-liquid system shown, compute /; and h,. Mercury 8 cm
Neglect the air density. l
I _r _
: 32cm :
T Oil, P2.16
Water SG =
/ 0.78 P2.17 The system in Fig. P2.17 is at 20°C. If the pressure at
A Mercury hy point A is 1900 Ibf/ft?, determine the pressures at points
/ B, C, and D in Ibf/fe,
27 cm - T -
| T (2]
Air Air
- 8 cm 2 ft
3 3 ft B
hy l 3 im z ° [ —
' | vAl T A
P2.14 ) 4ft
P2.15 The air—oil-water system in Fig. P2.15 is at 20°C. Know- 5 ft
ing that gage A reads 15 Ibf/in® absolute and gage B reads z
1.25 1bf/in® less than gage C, compute (a) the specific = 2t
weight of the oil in Ibf/ft® and () the actual reading of Water l.)
gage C in Ibf/in® absolute. P2.17 -
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P2.18 The system in Fig. P2.18 is at 20°C. If atmospheric

P2.19

P2.20

P2.21

pressure is 101.33 kPa and the pressure at the bottom

of the tank is 242 kPa, what is the specific gravity of
fluid X?

v
SAE300il | '™
Water 2m
Fluid X 3m
Mercury 0.5m

P2.18

2

The U-tube in Fig. P2.19 has a 1-cm ID and contains mer-
cury as shown. If 20 cm® of water is poured into the right-
hand leg, what will the free-surface height in each leg be
after the sloshing has died down?

Mercury

r

10 cm

L

o
1

N

LlOCmH‘

P2.19

The hydraulic jack in Fig. P2.20 is filled with oil at
56 Ibf/ft>. Neglecting the weight of the two pistons, what
force F on the handle is required to support the 2000-1bf
weight for this design?

At 20°C gage A reads 350 kPa absolute. What is the

height i of the water in cm? What should gage B read in
kPa absolute? See Fig. P2.21.

P2.22

P2.23

15 in |

1-in diameter

P2.20
Air: 180 kPa abs
v
h? Water
80 cm Mercury
Al E o — E ) B
P2.21

The fuel gage for a gasoline tank in a car reads propor-
tional to the bottom gage pressure as in Fig. P2.22. If
the tank is 30 cm deep and accidentally contains 2 cm
of water plus gasoline, how many centimeters of air

remain at the top when the gage erroneously reads
“full”?

Vent

Air h?
v
" Gasoline
SG =0.68
=  Water 2cm

P2.22 Page
In Fig. P2.23 both fluids are at 20°C. If surface tension

effects are negligible, what is the density of the oil, in
kg/m*?



Oil
______ P
T 8 cm
6 1:m
Water 10 em
P2.23 L N

The atmosphere

P2.24

*P2.25

P2.26

P2.27

In Prob. 1.2 we made a crude integration of the density
distribution p(z) in Table A.6 and estimated the mass of
the earth’s atmosphere to be m =~ 6 E18 kg. Can this
result be used to estimate sea-level pressure on the earth?
Conversely, can the actual sea-level pressure of 101.35
kPa be used to make a more accurate estimate of the
atmospheric mass?

As measured by NASA’s Viking landers, the atmosphere of
Mars, where g = 3.71 m/sz, is almost entirely carbon diox-
ide, and the surface pressure averages 700 Pa. The tem-
perature is cold and drops off exponentially: T = T, ¢ <%,
where C = 1.3E-5 m~ ! and 7, = 250 K. For example, at
20,000 m altitude, T'= 193 K. (a) Find an analytic formula
for the variation of pressure with altitude. (b) Find the alti-
tude where pressure on Mars has dropped to 1 pascal.
For gases that undergo large changes in height, the linear
approximation, Eq. (2.14), is inaccurate. Expand the tro-
posphere power-law, Eq. (2.20), into a power series, and
show that the linear approximation p = p, — p, gz is ade-
quate when

2T,
o where n = £

87 < ——9
(n— 1B RB

Conduct an experiment to illustrate atmospheric pressure.
Note: Do this over a sink or you may get wet! Find a
drinking glass with a very smooth, uniform rim at the top.
Fill the glass nearly full with water. Place a smooth, light,
flat plate on top of the glass such that the entire rim of
the glass is covered. A glossy postcard works best. A small
index card or one flap of a greeting card will also work.
See Fig. P2.27a.

(a) Hold the card against the rim of the glass and turn
the glass upside down. Slowly release pressure on the
card. Does the water fall out of the glass? Record your
experimental observations. (b) Find an expression for

P2.28

P2.29

Problems 113

the pressure at points 1 and 2 in Fig. P2.27b. Note that
the glass is now inverted, so the original top rim of the
glass is at the bottom of the picture, and the original
bottom of the glass is at the top of the picture. The
weight of the card can be neglected. (¢) Estimate the
theoretical maximum glass height at which this experi-
ment could still work, such that the water would not fall
out of the glass.

Card Top of glass 7

P2.27a Bottom of glass
Original bottom of glz:SJ
P2.27b Card / Original top of glass

A correlation of numerical calculations indicates that,
all other things being equal, the distance traveled by a
well-hit baseball varies inversely as the cube root of the
air density. If a home-run ball hit in New York City
travels 400 ft, estimate the distance it would travel in
(a) Denver, Colorado, and (b) La Paz, Bolivia.

An airplane flies at a Mach number of 0.82 at a standard
altitude of 24,000 ft. (a) What is the plane’s velocity, in
mi/h? (b) What is the standard density at that altitude?

Manometers; multiple flids

P2.30

For the traditional equal-level manometer measurement in
Fig. E2.3, water at 20°C @iws through the plug device from
a to b. The manometer fluid is mercury. If L = 12 cm and
h = 24 cm, (a) what is the pressure drop through the
device? (b) If the water flows through the pipe at a
velocity V = 18 ft/s, what is the dimensionless loss
coeffiient of the device, defined by K = Ap/(pV?)? We
will study loss coefficients in Chap. 6.
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P2.31 In Fig. P2.31 all fluids are at 20°C. Determine the pres- *P2.34 Sometimes manometer dimensions have a significant

sure difference (Pa) between points A and B. effect. In Fig. P2.34 containers (a) and (b) are cylindri-
cal and conditions are such that p, = p,. Derive a for-
Kerosene [ \ mula for the pressure difference p, — p, when the

oil-water interface on the right rises a distance Ah < h,
for (a) d < D and (b) d = 0.15D. What is the percent-
age change in the value of Ap?

e R

)

Benzene

P2.31 (a) SAE 30 oil
: H
—f; Water
P2.32 For the inverted manometer of Fig. P2.32, all fluids are
at 20°C. If pp — p4 = 97 kPa, what must the height H be L
in cm?
Meriam h
red oil,
SG =0.827
18 cm
—| |—d
Water 3
H
Mercury P2.34 N J

P2.35 Water flows upward in a pipe slanted at 30°, as in Fig.
P2.35. The mercury manometer reads # = 12 cm. Both
35cm fluids are at 20°C. What is the pressure difference p; — p»

in the pipe?
®
P2.32

P2.33 In Fig. P2.33 the pressure at point A is 25 Ibf/in®. All flu-
ids are at 20°C. What is the air pressure in the closed
chamber B, in Pa?

Air B
SAE 30 oil T
LY Liquid, SG=145| 5cm P2.35
3cm
—  P2.36 In Fig. P2.36 both the tank and the tube are open to the
atmosphere. If L = 2.13 m, what is the angle of tilt 6 of the
4cm

A J 6 cm tube?
Water 8 em P2.37 The inclined manometer in Fig. P2.37 contains Meriam red
manometer oil, SG = 0.827. Assume that the reservoir is
3 fm very large. If the inclined arm is fitted with graduations 1
o in apart, what should the angle 6 be if each graduation

P2.33 corresponds to 1 Ibf/ft* gage pressure for p,?



P2.38

P2.39

P2.40

Reservoir

P2.37

If the pressure in container A in Fig. P2.38 is 150 kPa,
compute the pressure in container B.

\ 18 cm

16 cm

22 cm

8cm

P2.38 _L__ SN A

In Fig. P2.39 the right leg of the manometer is open to
the atmosphere. Find the gage pressure, in Pa, in the air
gap in the tank.

In Fig. P2.40 the pressures at A and B are the same,
100 kPa. If water is introduced at A to increase p4
to 130 kPa, find and sketch the new positions of the
mercury menisci. The connecting tube is a uniform
1-cm diameter. Assume no change in the liquid
densities.

P2.41

P2.42
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Air 8 cm

8cm

12 cm
Qil, N B S

SG=0.8
9cm
11 cm

P2.39

Mercury

P2.40

The system in Fig. P2.41 is at 20°C. Compute the pres-
sure at point A in Ibf/ft* absolute.

Water

Oil, SG =0.85 L
s p, = 14.7 1bf/in
A ‘f
—n
6 in =

i

Mercury

P2.41

Very small pressure differences py — pp can be meas-
ured accurately by the two-fluid differential manometer
in Fig. P2.42. Density p, is only slightly larger than that
of the upper fluid p,. Derive an expression for the
proportionality between & and p, — pp if the reservoirs
are very large.
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P2.43

P2.44

R I VAR 'S N B VAR B B
; Py B Py
h, ‘f h,
h
pz
P2.42 2 /)

The traditional method of measuring blood pressure uses
a sphygmomanometer, first recording the highest (sys-
tolic) and then the lowest (diastolic) pressure from which
flowing “Korotkoff” sounds can be heard. Patients with
dangerous hypertension can exhibit systolic pressures
as high as 5 Ibf/in%. Normal levels, however, are 2.7 and
1.7 Ibf/in®, respectively, for systolic and diastolic pres-
sures. The manometer uses mercury and air as fluids.
(a) How high in cm should the manometer tube be?
(b) Express normal systolic and diastolic blood pressure
in millimeters of mercury.

Water flows downward in a pipe at 45°, as shown in
Fig. P2.44. The pressure drop p; — p, is partly due to
gravity and partly due to friction. The mercury
manometer reads a 6-in height difference. What is the
total pressure drop p; — p, in Ibf/in®>? What is the pres-
sure drop due to friction only between 1 and 2 in
Ibf/in*? Does the manometer reading correspond only
to friction drop? Why?

P2.44

P2.45

P2.46

P2.47

In Fig. P2.45, determine the gage pressure at point A in
Pa. Is it higher or lower than atmospheric?

palm
Air
0\
T || * Oil,
SG=085| | —
30 cm
45 cm 40 em
15 cm
o/
P2.45 Water Mercury

In Fig. P2.46 both ends of the manometer are open to the
atmosphere. Estimate the specific gravity of fluid X.

SAE 30 oil
9cm
10 cm
Water Y
S5cm
7 cm Y
T Fluid X 6cm
4 cm
N v
P2.46 ! 12cm !

The cylindrical tank in Fig. P2.47 is being filled with
water at 20°C by a pump developing an exit pressure of
175 kPa. At the instant shown, the air pressure is 110 kPa
and H = 35 cm. The pump stops when it can no longer
raise the water pressure. For isothermal air compression,
estimate H at that time.



P2.48

+

15cm

Air
20° C
75 cm
+| v
H Wat
ater L
P2.47 L =~ Pump

The system in Fig. P2.48 is open to 1 atm on the right
side. (a) If L = 120 cm, what is the air pressure in con-
tainer A? (b) Conversely, if p, = 135 kPa, what is the
length L?

- Air\
32 cm
_ Lg_l _ __L

Mercury
P2.48

Forces on plane surfaces

P2.49

Conduct the following experiment to illustrate air pres-
sure. Find a thin wooden ruler (approximately 1 ft in
length) or a thin wooden paint stirrer. Place it on the edge
of a desk or table with a little less than half of it hanging
over the edge lengthwise. Get two full-size sheets of
newspaper; open them up and place them on top of the
ruler, covering only the portion of the ruler resting on the
desk as illustrated in Fig. P2.49. (a) Estimate the total
force on top of the newspaper due to air pressure in the
room. (b) Careful! To avoid potential injury, make sure
nobody is standing directly in front of the desk. Perform
a karate chop on the portion of the ruler sticking out over
the edge of the desk. Record your results. (c) Explain your
results.
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Newspaper

P2.50

P2.51

P2.52

Ruler

Desk

P2.49

A small submarine, with a hatch door 30 in in diameter,
is submerged in seawater. (a) If the water hydrostatic
force on the hatch is 69,000 1bf, how deep is the sub?
(b) If the sub is 350 ft deep, what is the hydrostatic force
on the hatch?

Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into
the paper. Neglecting atmospheric pressure, compute
the force F on the gate and its center-of-pressure
position X.

Oil,
SG=0.82

4 m

Bl
N

X B

P2.51

Example 2.5 calculated the force on plate AB and its line
of action, using the moment-of-inertia approach. Some
teachers say it is more instructive to calculate these by
direct integration of the pressure forces. Using Figs.
P2.52 and E2.5a, (a) find an expression for the pressure
variation p(¢) along the plate; (b) integrate this expres-
sion to find the total force F; (c¢) integrate the moments
about point A to find the position of the center of
pressure.
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P2.53

P2.54

P2.55

P2.56

P2.57

Chapter 2 Pressure Distribution in a Fluid

N

pP2.52

Panel ABC in the slanted side of a water tank is an isosce-
les triangle with the vertex at A and the base BC = 2 m,
as in Fig. P2.53. Find the water force on the panel and its
line of action.

P2.53

In Fig. P2.54, the hydrostatic force F' is the same on the
bottom of all three containers, even though the weights of
liquid above are quite different. The three bottom shapes
and the fluids are the same. This is called the hydrostatic
paradox. Explain why it is true and sketch a free body of
each of the liquid columns.

P2.58

L] L

P2.54 (@) (b) (©)

Gate AB in Fig. P2.55 is 5 ft wide into the paper, hinged
at A, and restrained by a stop at B. The water is at 20°C.
Compute (a) the force on stop B and (b) the reactions at
A if the water depth & = 9.5 ft.

In Fig. P2.55, gate AB is 5 ft wide into the paper, and stop
B will break if the water force on it equals 9200 1bf. For
what water depth £ is this condition reached? *P2.59
The tank in Fig. P2.57 is 2 m wide into the paper.
Neglecting atmospheric pressure, find the resultant hydro-
static force on panel BC (a) from a single formula and
(b) by computing horizontal and vertical forces separately,
in the spirit of Section 2.6.

p, v
Water
Py
h
11
4 ft
ol |
P2.55
AVA
3m
Water
P2.57

In Fig. P2.58, the cover gate AB closes a circular open-
ing 80 cm in diameter. The gate is held closed by a 200-kg
mass as shown. Assume standard gravity at 20°C. At what
water level & will the gate be dislodged? Neglect the
weight of the gate.

\4 200 k;
= | f £
4 B
B A 30 cm
Water Im
P2.58

Gate AB has length L and width b into the paper, is
hinged at B, and has negligible weight. The liquid level
h remains at the top of the gate for any angle 6. Find an
analytic expression for the force P, perpendicular
to AB, required to keep the gate in equilibrium in
Fig. P2.59.



P2.60

*P2.61

P2.62
EES

P2.59

Determine the water hydrostatic force on one side of the
vertical equilateral triangle panel BCD in Fig. P2.60. P2.63
Neglect atmospheric pressure.

D

i
P2.60 }‘30 Cm*‘

20 cm

_L

40 cm

Gate AB in Fig. P2.61 is a homogeneous mass of 180 kg,
1.2 m wide into the paper, hinged at A, and resting on a
smooth bottom at B. All fluids are at 20°C. For what water
depth £ will the force at point B be zero?

\4

Glycerin

4

Water

*P2.64

P2.61

Gate AB in Fig. P2.62 is 15 ft long and 8 ft wide into the
paper and is hinged at B with a stop at A. The water is at
20°C. The gate is 1-in-thick steel, SG = 7.85. Compute the
water level & for which the gate will start to fall.

Problems 119

P2.62

The tank in Fig. P2.63 has a 4-cm-diameter plug at the
bottom on the right. All fluids are at 20°C. The plug will
pop out if the hydrostatic force on it is 25 N. For this con-
dition, what will be the reading # on the mercury
manometer on the left side?

v

Water
50°

Mercury

P2.63

Gate ABC in Fig. P2.64 has a fixed hinge line at B and is
2 m wide into the paper. The gate will open at A to release
water if the water depth is high enough. Compute the
depth & for which the gate will begin to open.

C \Y4

20 cm B

Water at 20°C

P2.64
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*P2.65

P2.66

*P2.67

P2.68

Gate AB in Fig. P2.65 is semicircular, hinged at B, and
held by a horizontal force P at A. What force P is required
for equilibrium?

AvA

Water

Gate:
Side view

P2.65

Dam ABC in Fig. P2.66 is 30 m wide into the paper and
made of concrete (SG = 2.4). Find the hydrostatic force
on surface AB and its moment about C. Assuming no
seepage of water under the dam, could this force tip the
dam over? How does your argument change if there is
seepage under the dam?

AvA A

Water 20°C
80 m

Dam

P2.66 \ 60 m \

Generalize Prob. P2.66 as follows. Denote length AB as
H, length BC as L, and angle ABC as 6. Let the dam
material have specific gravity SG. The width of the dam
is b. Assume no seepage of water under the dam. Find
an analytic relation between SG and the critical angle 6.
for which the dam will just tip over to the right. Use
your relation to compute 6, for the special case SG =
2.4 (concrete).

Isosceles triangle gate AB in Fig. P2.68 is hinged at A and
weighs 1500 N. What horizontal force P is required at
point B for equilibrium?

P2.69

P2.70

*P2.71

AvA

0Oil, SG =0.83

P2.68

Consider the slanted plate AB of length L in Fig. P2.69.
(a) Is the hydrostatic force F on the plate equal to the
weight of the missing water above the plate? If not, cor-
rect this hypothesis. Neglect the atmosphere. (b) Can a
“missing water” theory be generalized to curved surfaces
of this type?

Water specific weight y
P2.69

The swing-check valve in Fig. P2.70 covers a 22.86-cm
diameter opening in the slanted wall. The hinge is 15 cm
from the centerline, as shown. The valve will open when
the hinge moment is 50 N - m. Find the value of i for
the water to cause this condition.

~Z

P2.70

In Fig. P2.71 gate AB is 3 m wide into the paper and is
connected by a rod and pulley to a concrete sphere
(SG = 2.40). What diameter of the sphere is just suffi-
cient to keep the gate closed?



P2.72

P2.73

P2.74

P2.75

Concrete
sphere, SG =2.4
6m
I : v
A 8m
4 m Water
BLé] _T'
P2.71 L]

Gate B in Fig. P2.72 is 30 cm high, 60 cm wide into the
paper, and hinged at the top. What water depth £ will first
cause the gate to open?

VA
. Water h
Air at
10 kPa
gage
P2.72 ]

Gate AB is 5 ft wide into the paper and opens to let fresh
water out when the ocean tide is dropping. The hinge at
A is 2 ft above the freshwater level. At what ocean level
h will the gate first open? Neglect the gate weight.

AQ

i Tide

range

A

10 ft

Seawater, SG = 1.025

Stop |_|

o]

P2.73

Find the height H in Fig. P2.74 for which the hydrostatic
force on the rectangular panel is the same as the force on
the semicircular panel below.

The cap at point B on the 5-cm-diameter tube in Fig.
P2.75 will be dislodged when the hydrostatic force on its
base reaches 22 1bf. For what water depth & does this
occur?

P2.76

P2.77
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| <

l
.|

P2.74
Water h
P2.75 _ J _

Panel BC in Fig. P2.76 is circular. Compute (a) the hydro-
static force of the water on the panel, () its center of pres-
sure, and (c¢) the moment of this force about point B.

P2.76

The circular gate ABC in Fig. P2.77 has a 1-m radius and
is hinged at B. Compute the force P just sufficient to keep
the gate from opening when 2 = 8 m. Neglect atmos-
pheric pressure.

P, \V4 —
Water
pll
h
A= ——
*
1 m
o 4
Im
C 5 <—+P
P2.77 L
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P2.78

P2.79

*P2.80

Panels AB and CD in Fig. P2.78 are each 120 cm wide
into the paper. (a) Can you deduce, by inspection, which

P2.81
panel has the larger water force? (b) Even if your deduc-
tion is brilliant, calculate the panel forces anyway.
B *P2.82
40 cm
40cm |
-t ——=-
P2.78

Gate ABC in Fig. P2.79 is 1 m square and is hinged at

B. It will open automatically when the water level i
becomes high enough. Determine the lowest height for *P2.83
which the gate will open. Neglect atmospheric pressure.

Is this result independent of the liquid density?

Vv
J h Water
B

A 60 cm
C 40 cm

A concrete dam (SG = 2.5) is made in the shape of an
isosceles triangle, as in Fig. P2.80. Analyze this geome-
try to find the range of angles 6 for which the hydrostatic
force will tend to tip the dam over at point B. The width
into the paper is b.

P2.79 P2.84

P2.85

P2.80

Forces on curved surfaces

For the semicircular cylinder CDE in Example 2.9, find
the vertical hydrostatic force by integrating the vertical
component of pressure around the surface from 6 = 0 to
0 = .

The dam in Fig. P2.82 is a quarter circle 50 m wide
into the paper. Determine the horizontal and vertical com-
ponents of the hydrostatic force against the dam and the
point CP where the resultant strikes the dam.

= ——

20 m
| CP

Water !

P2.82

Gate AB in Fig. P2.83 is a quarter circle 10 ft wide into
the paper and hinged at B. Find the force F just sufficient
to keep the gate from opening. The gate is uniform and
weighs 3000 1bf.

Water

P2.83

Panel AB in Fig. P2.84 is a parabola with its maximum
at point A. It is 150 cm wide into the paper. Neglect atmos-
pheric pressure. Find (a) the vertical and (b) the horizon-
tal water forces on the panel.

]
2? Water
cm |
I Parabola
|
|
|
75cm |
|
b 40
P2.84 _y__L_~em

Compute the horizontal and vertical components of the
hydrostatic force on the quarter-circle panel at the bottom
of the water tank in Fig. P2.85.



P2.86

P2.87

*P2.88

|
6m
I
V |
= |
|
I
: 5m
_ L
7 \\
/ S o
Water /
RS 2m

P2.85

The quarter circle gate BC in Fig. P2.86 in hinged at C.
Find the horizontal force P required to hold the gate
stationary. Neglect the weight of the gate.

P

|k

Water

P2.86 Cc

The bottle of champagne (SG = 0.96) in Fig. P2.87 is
under pressure, as shown by the mercury-manometer
reading. Compute the net force on the 2-in-radius hemi-
spherical end cap at the bottom of the bottle.

P2.87

Mercury

Gate ABC is a circular arc, sometimes called a Tainter
gate, which can be raised and lowered by pivoting about
point O. See Fig. P2.88. For the position shown, deter-
mine (a) the hydrostatic force of the water on the gate
and (b) its line of action. Does the force pass through
point O?

P2.89

P2.90

P2.91

Problems 123
v c
Wa_ter R=6m
6 m B o
6 m
- A

P2.88

The tank in Fig. P2.89 contains benzene and is pressur-
ized to 200 kPa (gage) in the air gap. Determine the ver-
tical hydrostatic force on circular-arc section AB and its
line of action.

| 60 cm |
30 cm p =200 kPa
SRS S v A
Benzene
60 cm at 20°C

P2.89 A

The tank in Fig. P2.90 is 120 cm long into the paper.
Determine the horizontal and vertical hydrostatic forces
on the quarter-circle panel AB. The fluid is water at 20°C.
Neglect atmospheric pressure.

\VA

150 cm

75 cm

40 cm
P2.90 i

The hemispherical dome in Fig. P2.91 weighs 30 kN and
is filled with water and attached to the floor by six equally
spaced bolts. What is the force in each bolt required to
hold down the dome?
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P2.94 Find an analytic formula for the vertical and horizontal
— 3em forces on each of the semicircular panels AB in Fig. P2.94.
The width into the paper is b. Which force is larger?
Why?
4 m
Six
bolts
Water 2m
P2.91
P2.92 A 4-m-diameter water tank consists of two half cylinders, P2.94

each weighing 4.5 kN/m, bolted together as shown in

Fig. P2.92. If the support of the end caps is neglected, *P2.95 The uniform body A in Fig. P2.95 has width b into the
determine the force induced in each bolt. paper and is in static equilibrium when pivoted about
hinge O. What is the specific gravity of this body if
(a) h = 0 and (b) h = R?

I|<

P2.92

. . . . Wat
*P2.93 In Fig. P2.93, a one-quadrant spherical shell of radius R is ater

submerged in liquid of specific weight y and depth 2 > R.
Find an analytic expression for the resultant hydrostatic
force, and its line of action, on the shell surface.

P2.95
z

P2.96 Curved panel BC in Fig. P2.96 is a 60° arc, perpendicu-

lar to the bottom at C. If the panel is 4 m wide into the
Py paper, estimate the resultant hydrostatic force of the water
on the panel.

| <

P2.93 P2.96




P2.97

P2.98

P2.99

The contractor ran out of gunite mixture and finished the
deep corner, of a 5-m-wide swimming pool, with a
quarter-circle piece of PVC pipe, labeled AB in Fig.
P2.97. Compute the horizontal and vertical water forces
on the curved panel AB.

Water

L
mE

P2.97 ___t___

Gate ABC in Fig. P2.98 is a quarter circle 8 ft wide into
the paper. Compute the horizontal and vertical hydrostatic
forces on the gate and the line of action of the resultant
force.

~
r=4ft
Water
45°
<
P2.98 c

The mega-magnum cylinder in Fig. P2.99 has a
hemispherical bottom and is pressurized with air to
75 kPa (gage) at the top. Determine (a) the horizontal
and (b) the vertical hydrostatic forces on the hemisphere,
in 1bf.

)

‘Water

20 ft

P2.99 | i
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P2.100 Pressurized water fills the tank in Fig. P2.100. Compute

the net hydrostatic force on the conical surface ABC.

m 50 kpa
= gage
Water

P2.100

Forces on layered surfaces
P2.101 The closed layered box in Fig. P2.101 has square hori-

zontal cross sections everywhere. All fluids are at 20°C.
Estimate the gage pressure of the air if (a) the hydrostatic
force on panel AB is 48 kN or (b) the hydrostatic force
on the bottom panel BC is 97 kN.

60cm | Air / 30 em
80 cm SAE 30W oil
_______ A
90 cm Water
C B
P2.101 160 cm

P2.102 A cubical tank is 3 X 3 X 3 m and is layered with 1 meter

of fluid of specific gravity 1.0, 1 meter of fluid with
SG = 0.9, and 1 meter of fluid with SG = 0.8. Neglect
atmospheric pressure. Find (a) the hydrostatic force on
the bottom and (b) the force on a side panel.

Buoyancy; Archimedes’principles
P2.103 A solid block, of specific gravity 0.9, floats such that

75 percent of its volume is in water and 25 percent of its
volume is in fluid X, which is layered above the water.
What is the specific gravity of fluid X?
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P2.104 The can in Fig. P2.104 floats in the position shown.
is its weight in N?

“om Water
|

e p=vem

P2.104

What

P2.105 It is said that Archimedes discovered the buoyancy laws
when asked by King Hiero of Syracuse to determine
whether his new crown was pure gold (SG = 19.3).
Archimedes measured the weight of the crown in air to
be 11.8 N and its weight in water to be 10.9 N. Was it

pure gold?

P2.106 A spherical helium balloon is 2.5 m in diameter and has

a total mass of 6.7 kg. When released into the U.S.

dard atmosphere, at what altitude will it settle?

stan-

P2.107 Repeat Prob. 2.62, assuming that the 10,000-1bf weight is
aluminum (SG = 2.71) and is hanging submerged in the

water.

P2.108 A 7-cm-diameter solid aluminum ball (SG = 2.7) and a
solid brass ball (SG = 8.5) balance nicely when sub-
merged in a liquid, as in Fig. P2.108. (a) If the fluid is

water at 20°C, what is the diameter of the brass
(b) If the brass ball has a diameter of 3.8 cm, what
density of the fluid?

2 pulleys

=

P2.108

ball?
is the

P2.109 A hydrometer floats at a level that is a measure of the spe-
cific gravity of the liquid. The stem is of constant diam-
eter D, and a weight in the bottom stabilizes the body to
float vertically, as shown in Fig. P2.109. If the position
h = 0 is pure water (SG = 1.0), derive a formula for &
as a function of total weight W, D, SG, and the specific

weight 7y, of water.

~
D
T SG=1.0
h ]
vy
Fluid, SG > 1

&

P2.109

P2.110 A solid sphere, of diameter 18 cm, floats in 20°C water

P2.111

with 1,527 cubic centimeters exposed above the surface.
(a) What are the weight and specific gravity of this
sphere? (b) Will it float in 20°C gasoline? If so, how many
cubic centimeters will be exposed?

A hot-air balloon must be designed to support basket,
cords, and one person for a total weight of 1300 N. The
balloon material has a mass of 60 g/m®. Ambient air is
at 25°C and 1| atm. The hot air inside the balloon is at
70°C and 1 atm. What diameter spherical balloon will
just support the total weight? Neglect the size of the hot-
air inlet vent.

P2.112 The uniform 5-m-long round wooden rod in Fig. P2.112

is tied to the bottom by a string. Determine (a) the ten-
sion in the string and (b) the specific gravity of the wood.
Is it possible for the given information to determine the
inclination angle 67 Explain.

aa

Water at 20°C

/ _—String

P2.113

P2.112

A spar buoy is a buoyant rod weighted to float and pro-
trude vertically, as in Fig. P2.113. It can be used for meas-
urements or markers. Suppose that the buoy is maple wood
(SG = 0.6), 2 in by 2 in by 12 ft, floating in seawater



(SG = 1.025). How many pounds of steel (SG = 7.85)
should be added to the bottom end so that 2 = 18 in?

—

a4

Wsteel
P2.113

P2.114 The uniform rod in Fig. P2.114 is hinged at point B on

the waterline and is in static equilibrium as shown when
2 kg of lead (SG = 11.4) are attached to its end. What is
the specific gravity of the rod material? What is peculiar
about the rest angle 6§ = 30°?

Hinge

o

N
¥
5

I|<

8m
\ 2 kg of lead

P2.114

P2.115 The 2-in by 2-in by 12-ft spar buoy from Fig. P2.113 has

5 Ibm of steel attached and has gone aground on a rock,
as in Fig. P2.115. Compute the angle 6 at which the buoy
will lean, assuming that the rock exerts no moments on
the spar.

Seawater

P2.115 s
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P2.116 The deep submersible vehicle ALVIN in the chapter-
opener photo has a hollow titanium (SG = 4.50) spheri-
cal passenger compartment with an inside diameter of
78.08 in and a wall thickness of 1.93 in. (a) Would the
empty sphere float in seawater? (b) Would it float if it
contained 1000 lbm of people and equipment inside?
(c) What wall thickness would cause the empty sphere to
be neutrally buoyant?

P2.117 The balloon in Fig. P2.117 is filled with helium and pres-
surized to 135 kPa and 20°C. The balloon material has a
mass of 85 g/m”. Estimate (@) the tension in the mooring
line and (b) the height in the standard atmosphere to
which the balloon will rise if the mooring line is cut.

Air:
100 kPa at
20°C

P2.117

P2.118 An intrepid treasure-salvage group has discovered a steel
box, containing gold doubloons and other valuables, rest-
ing in 80 ft of seawater. They estimate the weight of the
box and treasure (in air) at 7000 1bf. Their plan is to attach
the box to a sturdy balloon, inflated with air to 3 atm pres-
sure. The empty balloon weighs 250 1bf. The box is 2 ft
wide, 5 ft long, and 18 in high. What is the proper diam-
eter of the balloon to ensure an upward lift force on the
box that is 20 percent more than required?

P2.119 When a 5-Ibf weight is placed on the end of the uniform
floating wooden beam in Fig. P2.119, the beam tilts at an
angle 6 with its upper right corner at the surface, as
shown. Determine (a) the angle 6 and (b) the specific
gravity of the wood. Hint: Both the vertical forces and the
moments about the beam centroid must be balanced.

5 Ibf

aa

‘Water . )
4inx4in

P2.119

P2.120 A uniform wooden beam (SG = 0.65) is 10 cm by 10 cm
by 3 m and is hinged at A, as in Fig. P2.120. At what angle
6 will the beam float in the 20°C water?
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¥ 2
je— D m
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\V4 1 P2.123 I I
= 6
Water P2.124 A balloon weighing 3.5 1bf is 6 ft in diameter. It is filled
with hydrogen at 18 Ibf/in®> absolute and 60°F and is
P2.120 released. At what altitude in the U.S. standard atmosphere

will this balloon be neutrally buoyant?

P2.121 The uniform beam in Fig. P2.121, of size L by 7 by b and  P2.125 A solid sphere, of diameter 20 cm, has a specific gravity

with specific weight v, floats exactly on its diagonal when of 0.7. (a) Will this sphere float in 20°C SAE 10W oil?

a heavy uniform sphere is tied to the left corner, as If so, (b) how many cubic centimeters are exposed, and

(c) how high will a spherical cap protrude above the sur-

face? Note: If your knowledge of offbeat sphere formulas

is lacking, you can “Ask Dr. Math” at Drexel University,

L h<<L <http://mathforum.org/dr.math/> EES is recommended
for the solution.

P2.126 A block of wood (SG = 0.6) floats in fluid X in

Y Fig. P2.126 such that 75 percent of its volume is sub-

merged in fluid X. Estimate the vacuum pressure of the

@ Diameter D air in the tank.

Width b << L

| <

Air =0 kPa gage Air pressure?
P2.121 Wood
shown. Show that this can happen only (a) when vy, = /3
and (b) when the sphere has size
Fluid X

th 1/3
a Lr(sc; - 1>}

P2.126

P2.122 A uniform block of steel (SG = 7.85) will “float” at a

mercury—water interface as in Fig. P2.122. What is the  Stability of flating bodies

tio of the dist d b for thi dition?
Fato of the distances a ai of fis condition *P2.127 Consider a cylinder of specific gravity S < 1 floating ver-

tically in water (S = 1), as in Fig. P2.127. Derive a for-

\V4 mula for the stable values of D/L as a function of S and
— apply it to the case D/L = 1.2.
Water

\V/ Steel a L_ D |

— block b

Mercury: SG = 13.56
P2.122

P2.123 A barge has the trapezoidal shape shown in Fig. P2.123
and is 22 m long into the paper. If the total weight of
barge and cargo is 350 tons, what is the draft H of the
barge when floating in seawater? P2.127



http://mathforum.org/dr.math/

P2.128 An iceberg can be idealized as a cube of side length L, as
in Fig. P2.128. If seawater is denoted by S = 1.0, then
glacier ice (which forms icebergs) has S = 0.88. Deter-
mine if this “cubic” iceberg is stable for the position
shown in Fig. P2.128.

Specific gravity

Y

oM e

T G :
h 'Y:) Water
S=1.0

]

P2.128

P2.129 The iceberg idealization in Prob. P2.128 may become
unstable if its sides melt and its height exceeds its width.
In Fig. P2.128 suppose that the height is L and the depth
into the paper is L, but the width in the plane of the paper
is H < L. Assuming S = 0.88 for the iceberg, find the
ratio H/L for which it becomes neutrally stable (about to
overturn).

P2.130 Consider a wooden cylinder (SG = 0.6) 1 m in diameter
and 0.8 m long. Would this cylinder be stable if placed to
float with its axis vertical in oil (SG = 0.8)?

P2.131 A barge is 15 ft wide and 40 ft long and floats with a draft
of 4 ft. It is piled so high with gravel that its center of
gravity is 3 ft above the waterline. Is it stable?

P2.132 A solid right circular cone has SG = 0.99 and floats
vertically as in Fig. P2.132. Is this a stable position for

the cone?
v
W_ater 5
SG=1.0
P2.132

P2.133 Consider a uniform right circular cone of specific grav-

S ity S < I, floating with its vertex down in water (S = 1).
The base radius is R and the cone height is H. Calcu-
late and plot the stability MG of this cone, in dimen-
sionless form, versus H/R for a range of § < 1.

P2.134 When floating in water (SG = 1.0), an equilateral tri-
angular body (SG = 0.9) might take one of the two

Problems 129

positions shown in Fig. P2.134. Which is the more
stable position? Assume large width into the paper.

YA

(@) (b)
P2.134

P2.135 Consider a homogeneous right circular cylinder of
length L, radius R, and specific gravity SG, floating in
water (SG = 1). Show that the body will be stable with
its axis vertical if

R
7 > [2SG(1 — SG)]"*

P2.136 Consider a homogeneous right circular cylinder of length
L, radius R, and specific gravity SG = 0.5, floating in
water (SG = 1). Show that the body will be stable with
its axis horizontal if L/R > 2.0.

Uniform acceleration

P2.137 A tank of water 4 m deep receives a constant upward
acceleration a,. Determine (a) the gage pressure at the tank
bottom if @, = 5 m?/s and (b) the value of . that causes
the gage pressure at the tank bottom to be 1 atm.

P2.138 A 12-fl-oz glass, of 3-in diameter, partly full of water, is
attached to the edge of an 8-ft-diameter merry-
go-round, which is rotated at 12 r/min. How full can the
glass be before water spills? Hint: Assume that the glass is
much smaller than the radius of the merry-go-round.

P2.139 The tank of liquid in Fig. P2.139 accelerates to the right
with the fluid in rigid-body motion. (a¢) Compute a, in
m/s>. (b) Why doesn’t the solution to part (a) depend on
the density of the fluid? (c) Determine the gage pressure
at point A if the fluid is glycerin at 20°C.

P2.139

P2.140 Suppose an elliptical-end fuel tank that is 10 m long and
has a 3-m horizontal major axis and 2-m vertical major
axis is filled completely with fuel oil (p = 890 kg/m®). Let
the tank be pulled along a horizontal road. For rigid-body
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motion, find the acceleration, and its direction, for A
which (a) a constant-pressure surface extends from the E
top of the front end wall to the bottom of the back end
and (b) the top of the back end is at a pressure 0.5 atm
lower than the top of the front end. 2 ft —a
P2.141 The same tank from Prob. P2.139 is now moving with
constant acceleration up a 30° inclined plane, as in Fig.
P2.141. Assuming rigid-body motion, compute (a) the Water 5
value of the acceleration a, (b) whether the acceleration ' =
is up or down, and (c¢) the gage pressure at point A if the
fluid is mercury at 20°C. L

P2.143 Ll ft ! 2t !

P2.144 Consider a hollow cube of side length 22 cm, filled com-
pletely with water at 20°C. The top surface of the cube is
horizontal. One top corner, point A, is open through a small
hole to a pressure of 1 atm. Diagonally opposite to point A
is top corner B. Determine and discuss the various rigid-
body accelerations for which the water at point B begins to
cavitate, for (a) horizontal motion and (b) vertical motion.

P2.145 A fish tank 14 in deep by 16 by 27 in is to be carried
in a car that may experience accelerations as high as
6 m/s*>. What is the maximum water depth that will
avoid spilling in rigid-body motion? What is the proper

P2.142 The tank of water in Fig. P2.142 is 12 cm wide into the alignment of the tank with respect to the car motion?
paper. If the tank is accelerated to the right in rigid-body =~ P2.146 The tank in Fig. P2.146 is filled with water and has a vent

p, =15 Ibf/in® abs

P2.141

motion at 6.0 m/s%, compute (a) the water depth on side
AB and (b) the water-pressure force on panel AB. Assume
no spilling.

8 = T
9cm
Water at 20°C
A
f 24 cm !
P2.142

P2.143 The tank of water in Fig. P2.143 is full and open to the

atmosphere at point A. For what acceleration a, in ft/s®
will the pressure at point B be (a) atmospheric and
(b) zero absolute?

hole at point A. The tank is 1 m wide into the paper. Inside
the tank, a 10-cm balloon, filled with helium at 130 kPa,
is tethered centrally by a string. If the tank accelerates to
the right at 5 m/s? in rigid-body motion, at what angle will
the balloon lean? Will it lean to the right or to the left?

60 cm ‘
o A
1 atm
Water at 20°C
D=10cm
40 cm -
20 cm
|~ String
P2.146
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P2.147 The tank of water in Fig. P2.147 accelerates uniformly by =~ P2.150 A cheap accelerometer, probably worth the price, can be

freely rolling down a 30° incline. If the wheels are fric- made from a U-tube as in Fig. P2.150. If L = 18 cm and
tionless, what is the angle 6?7 Can you explain this inter- D = 5 mm, what will & be if a, = 6 m/s*? Can the scale
esting result? markings on the tube be linear multiples of a,?

o\

D
h Rest level
I R
ir ir
N i
P2.150 L

P2.147

P2.148 A child is holding a string onto which is attached a helium-  P2,151 The U-tube in Fig. P2.151 is open at A and closed at D. If

filled balloon. (@) The child is standing still and suddenly accelerated to the right at uniform a,, what acceleration will
accelerates forward. In a frame of reference moving with cause the pressure at point C to be atmospheric? The fluid
the child, which way will the balloon tilt, forward or is water (SG = 1.0).

backward? Explain. (b) The child is now sitting in a car
that is stopped at a red light. The helium-filled balloon is
not in contact with any part of the car (seats, ceiling, etc.)
but is held in place by the string, which is in turn held by
the child. All the windows in the car are closed. When the
traffic light turns green, the car accelerates forward. In a
frame of reference moving with the car and child, which
way will the balloon tilt, forward or backward? Explain.
(¢) Purchase or borrow a helium-filled balloon. Conduct a %
scientific experiment to see if your predictions in parts
(a) and (b) above are correct. If not, explain.

P2.149 The 6-ft-radius waterwheel in Fig. P2.149 is being used
to lift water with its 1-ft-diameter half-cylinder blades. If
the wheel rotates at 10 r/min and rigid-body motion is
assumed, what is the water surface angle 6 at position A? Rigid-body motion

P2.152 A 16-cm-diameter open cylinder 27 cm high is full of
water. Compute the rigid-body rotation rate about its cen-
tral axis, in r/min, (a) for which one-third of the water
will spill out and (b) for which the bottom will be barely
exposed.

P2.153 A tall cylindrical container, 14 in in diameter, is used to
make a mold for forming 14-in salad bowls. The bowls
are to be 8 in deep. The cylinder is half-filled with molten
plastic, w = 1.6 kg/(m-s), rotated steadily about the cen-
tral axis, then cooled while rotating. What is the appro-
priate rotation rate, in r/min?

P2.154 A very tall 10-cm-diameter vase contains 1178 cm® of
water. When spun steadily to achieve rigid-body

P2.151

P2.149
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rotation, a 4-cm-diameter dry spot appears at the bottom
of the vase. What is the rotation rate, in r/min, for this
condition?

P2.155 For what uniform rotation rate in r/min about axis C will

°

the U-tube in Fig. P2.155 take the configuration shown?
The fluid is mercury at 20°C.

-

20 cm

12 cm

10 cm

P2.155

P2.156 Suppose that the U-tube of Fig. P2.151 is rotated about

axis DC. If the fluid is water at 122°F and atmospheric
pressure is 2116 Ibf/ft> absolute, at what rotation rate will
the fluid within the tube begin to vaporize? At what point
will this occur?

P2.157 The 45° V-tube in Fig. P2.157 contains water and is open

at A and closed at C. What uniform rotation rate in r/min
about axis AB will cause the pressure to be equal at points
B and C? For this condition, at what point in leg BC will
the pressure be a minimum?

Word Problems

Ww2.1

Ww2.2

Consider a hollow cone with a vent hole in the vertex at
the top, along with a hollow cylinder, open at the top, with
the same base area as the cone. Fill both with water to the
top. The hydrostatic paradox is that both containers have
the same force on the bottom due to the water pressure,
although the cone contains 67 percent less water. Can you
explain the paradox?

Can the temperature ever rise with altitude in the real
atmosphere? Wouldn’t this cause the air pressure to
increase upward? Explain the physics of this situation.

P2.157

*P2.158 It is desired to make a 3-m-diameter parabolic telescope

°

mirror by rotating molten glass in rigid-body motion until
the desired shape is achieved and then cooling the glass
to a solid. The focus of the mirror is to be 4 m from the
mirror, measured along the centerline. What is the proper
mirror rotation rate, in r/min, for this task?

P2.159 The three-legged manometer in Fig. P2.159 is filled with

Ww2.3

Ww2.4

water to a depth of 20 cm. All tubes are long and have
equal small diameters. If the system spins at angular
velocity () about the central tube, (a) derive a formula to
find the change of height in the tubes; (b) find the height
in cm in each tube if ) = 120 r/min. Hint: The central
tube must supply water to both the outer legs.

<+<—10cm—>| [+=— 10 cm—>

20 cm

P2.159

Consider a submerged curved surface that consists of a
two-dimensional circular arc of arbitrary angle, arbitrary
depth, and arbitrary orientation. Show that the resultant
hydrostatic pressure force on this surface must pass
through the center of curvature of the arc.

Fill a glass approximately 80 percent with water, and add a
large ice cube. Mark the water level. The ice cube, having
SG = 0.9, sticks up out of the water. Let the ice cube melt
with negligible evaporation from the water surface. Will the
water level be higher than, lower than, or the same as before?



W2.5

W2.6

W2.7

A ship, carrying a load of steel, is trapped while floating
in a small closed lock. Members of the crew want to get
out, but they can’t quite reach the top wall of the lock.
A crew member suggests throwing the steel overboard in
the lock, claiming the ship will then rise and they can
climb out. Will this plan work?

Consider a balloon of mass m floating neutrally in the
atmosphere, carrying a person/basket of mass M > m.
Discuss the stability of this system to disturbances.
Consider a helium balloon on a string tied to the seat of
your stationary car. The windows are closed, so there is
no air motion within the car. The car begins to accelerate

Fundamentals of Engineering Exam Problems

FE2.1

FE2.2

FE2.3

FE2.4

A gage attached to a pressurized nitrogen tank reads a
gage pressure of 28 in of mercury. If atmospheric pres-
sure is 14.4 psia, what is the absolute pressure in the
tank?

(a) 95 kPa, (b) 99 kPa, (c) 101 kPa, (d) 194 kPa,

(e) 203 kPa

On a sea-level standard day, a pressure gage, moored
below the surface of the ocean (SG = 1.025), reads
an absolute pressure of 1.4 MPa. How deep is the
instrument?

(a) 4 m, (b) 129 m, (¢) 133 m, (d) 140 m,

(e) 2080 m

In Fig. FE2.3, if the oil in region B has SG = 0.8 and
the absolute pressure at point A is 1 atm, what is the
absolute pressure at point B?

(a) 5.6 kPa, (b) 10.9 kPa, (c) 107 kPa, (d) 112 kPa,

(e) 157 kPa
oil f @ Water
5 I:m L sG=1
B f
3cm
' 8 cm
Mercury —— || 4 fcm
SG=13.56 4
FE2.3

In Fig. FE2.3, if the oil in region B has SG = 0.8 and
the absolute pressure at point B is 14 psia, what is the
absolute pressure at point A?

Ww2.8

Ww2.9

FE2.5

FE2.6

FE2.7

FE2.8

FE2.9

FE2.10
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forward. Which way will the balloon lean, forward or
backward? Hint: The acceleration sets up a horizontal
pressure gradient in the air within the car.

Repeat your analysis of Prob. W2.7 to let the car move
at constant velocity and go around a curve. Will the bal-
loon lean in, toward the center of curvature, or out?
The deep submersible vehicle ALVIN in the chapter-
opener photo weighs approximately 36,000 1bf in air. It
carries 800 1bm of steel weights on the sides. After a deep
mission and return, two 400-1bm piles of steel are left on
the ocean floor. Can you explain, in terms relevant to this
chapter, how these steel weights are used?

(a) 11 kPa, (b) 41 kPa, (c) 86 kPa, (d) 91 kPa,

(e) 101 kPa

A tank of water (SG = 1.0) has a gate in its vertical
wall 5 m high and 3 m wide. The top edge of the gate
is 2 m below the surface. What is the hydrostatic force
on the gate?

(a) 147 kN, (b) 367 kN, (c) 490 kN, (d) 661 kN,

(e) 1028 kN

In Prob. FE2.5, how far below the surface is the center
of pressure of the hydrostatic force?

(a) 4.50 m, (b) 5.46 m, (c) 6.35 m, (d) 5.33 m,

(e) 496 m

A solid 1-m-diameter sphere floats at the interface
between water (SG = 1.0) and mercury (SG = 13.56)
such that 40 percent is in the water. What is the specific
gravity of the sphere?

(a) 6.02, (b) 7.28, (c) 7.78, (d) 8.54, (e) 12.56

A 5-m-diameter balloon contains helium at 125 kPa
absolute and 15°C, moored in sea-level standard air. If
the gas constant of helium is 2077 m?/(s*> - K) and
balloon material weight is neglected, what is the net lift-
ing force of the balloon?

(a) 67 N, (b) 134 N, (¢) 522 N, (d) 653 N, (e) 787 N
A square wooden (SG = 0.6) rod, 5 cm by 5 cm by 10 m
long, floats vertically in water at 20°C when 6 kg of steel
(SG = 7.84) are attached to one end. How high above the
water surface does the wooden end of the rod protrude?
(@) 0.6 m, (b) 1.6 m, (¢) 1.9 m, (d) 2.4 m, (¢) 40 m
A floating body will be stable when its

(a) center of gravity is above its center of buoyancy,
(b) center of buoyancy is below the waterline, (¢) center
of buoyancy is above its metacenter, (d) metacenter is
above its center of buoyancy, (e) metacenter is above its
center of gravity
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Comprehensive Problems

C2.1 Some manometers are constructed as in Fig. C2.1, where one  C2.2 A prankster has added oil, of specific gravity SGy, to the

side is a large reservoir (diameter D) and the other side is a
small tube of diameter d, open to the atmosphere. In such a
case, the height of manometer liquid on the reservoir side
does not change appreciably. This has the advantage that only
one height needs to be measured rather than two. The
manometer liquid has density p,, while the air has density p,,.
Ignore the effects of surface tension. When there is no pres-
sure difference across the manometer, the elevations on both
sides are the same, as indicated by the dashed line. Height &
is measured from the zero pressure level as shown. (a) When
a high pressure is applied to the left side, the manometer
liquid in the large reservoir goes down, while that in the tube
at the right goes up to conserve mass. Write an exact expres-
sion for pjgaee, taking into account the movement of the sur-
face of the reservoir. Your equation should give pjg,. as a
function of A, p,,, and the physical parameters in the prob-
lem, h, d, D, and gravity constant g. (b) Write an approxi-
mate expression for pg..., neglecting the change in eleva-
tion of the surface of the reservoir liquid. (¢) Suppose h =
0.26 m in a certain application. If p, = 101,000 Pa and the
manometer liquid has a density of 820 kg/m®, estimate the
ratio D/d required to keep the error of the approximation of
part (b) within 1 percent of the exact measurement of part
(a). Repeat for an error within 0.1 percent.

To pressure measurement location

p, (air)

t T — — — Zero pressure level

~—d

Q = 6.00 rpm

C23

|
R = 5.80 m (to center of manometer) |
|
1

Oil

left leg of the manometer in Fig. C2.2. Nevertheless, the
U-tube is still useful as a pressure-measuring device. It is
attached to a pressurized tank as shown in the figure.
(a) Find an expression for & as a function of H and other
parameters in the problem. (b) Find the special case of
your result in (@) when puc = pa. (¢) Suppose H = 5.0 cm,
po is 101.2kPa, py. is 1.82 kPa higher than p, and
SGy = 0.85. Calculate / in cm, ignoring surface tension
effects and neglecting air density effects.

Pressurized air tank,
with pressure = p,_

|<—¢A—>

Water

C2.2

Professor F. Dynamics, riding the merry-go-round with his
son, has brought along his U-tube manometer. (You never
know when a manometer might come in handy.) As shown
in Fig. C2.3, the merry-go-round spins at constant angu-
lar velocity and the manometer legs are 7 cm apart. The
manometer center is 5.8 m from the axis of rotation.
Determine the height difference % in two ways:
(a) approximately, by assuming rigid-body translation
with a equal to the average manometer acceleration; and
(b) exactly, using rigid-body rotation theory. How good is
the approximation?

‘ 7.00 cm ‘

Water

|
Center of
rotation

C2.3
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C2.5

C2.6

C2.7

A student sneaks a glass of cola onto a roller coaster ride.
The glass is cylindrical, twice as tall as it is wide, and filled
to the brim. He wants to know what percent of the cola he
should drink before the ride begins, so that none of it spills
during the big drop, in which the roller coaster achieves
0.55-g acceleration at a 45° angle below the horizontal.
Make the calculation for him, neglecting sloshing and
assuming that the glass is vertical at all times.
Dry adiabatic lapse rate (DALR) is defined as the nega-
tive value of atmospheric temperature gradient, d7/dz,
when temperature and pressure vary in an isentropic fash-
ion. Assuming air is an ideal gas, DALR = —dT/dz when
T = Ty(p/po)”, where exponent a = (k — 1)/k, k = c,lc,
is the ratio of specific heats, and 7, and p, are the tem-
perature and pressure at sea level, respectively. (a) Assum-
ing that hydrostatic conditions exist in the atmosphere,
show that the dry adiabatic lapse rate is constant and is
given by DALR = g(k — 1)/(kR), where R is the ideal gas
constant for air. (b) Calculate the numerical value of
DALR for air in units of °C/km.
In “soft” liquids (low bulk modulus ), it may be neces-
sary to account for liquid compressibility in hydrostatic
calculations. An approximate density relation would be
dp = %dp =a’dp  or  p=py+dip—p)
where a is the speed of sound and (py, poy) are the condi-
tions at the liquid surface z = 0. Use this approximation
to show that the density variation with depth in a soft liq-
uid is p = poe”"”“2 where g is the acceleration of gravity
and z is positive upward. Then consider a vertical wall of
width b, extending from the surface (z = 0) down to depth
z = —h. Find an analytic expression for the hydrostatic
force F on this wall, and compare it with the incom-
pressible result F = pogh®b/2. Would the center of
pressure be below the incompressible position z = —2h/3?
Venice, Italy, is slowly sinking, so now, especially in
winter, plazas and walkways are flooded during storms.
The proposed solution is the floating levee of Fig. C2.7.

Design Projects

D2.1

It is desired to have a bottom-moored, floating system
that creates a nonlinear force in the mooring line as the
water level rises. The design force F need only be accu-
rate in the range of seawater depths /4 between 6 and 8
m, as shown in the accompanying table. Design a buoy-
ant system that will provide this force distribution. The
system should be practical (of inexpensive materials and
simple construction).

C2.8

C2.9
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When filled with air, it rises to block off the sea. The
levee is 30 m high, 5 m wide, and 20 m deep. Assume
a uniform density of 300 kg/m’® when floating. For the
I-m sea—lagoon difference shown, estimate the angle at
which the levee floats.

Storm levee filled
with air to float

Adriatic Sea—25 m
deep in a storm
Venice lagoon—24 m deep

What is the uncertainty in using pressure measurement as
an altimeter? A gage on the side of an airplane measures
a local pressure of 54 kPa, with an uncertainty of 3 kPa.
The estimated lapse rate that day is 0.007 K/m, with an
uncertainty of 0.001 K/m. Effective sea-level temperature
is 10°C, with an uncertainty of 4°C. Effective sea-level
pressure is 100 kPa, with an uncertainty of 3 kPa. Estimate
the airplane’s altitude and its uncertainty.

The ALVIN submersible vehicle in the chapter-opener photo
has a passenger compartment which is a titanium sphere of
inside diameter 78.08 in and thickness 1.93 in. If the vehi-
cle is submerged to a depth of 3850 m in the ocean, estimate
(a) the water pressure outside the sphere, (b) the maximum
elastic stress in the sphere, in Ibf/in®, and (c) the factor of
safety of the titanium alloy (6% aluminum, 4% vanadium).

h, m

F,N h, m F,N

6.00
6.25
6.50
6.75
7.00

400
437
471
502
530

7.25
7.50
7.75
8.00

554
573
589
600
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D2.2 A laboratory apparatus used in some universities is shown
in Fig. D2.2. The purpose is to measure the hydrostatic
force on the flat face of the circular-arc block and compare
it with the theoretical value for given depth 4. The coun-
terweight is arranged so that the pivot arm is horizontal
when the block is not submerged, whence the weight W
can be correlated with the hydrostatic force when the sub-
merged arm is again brought to horizontal. First show that
the apparatus concept is valid in principle; then derive a
formula for W as a function of % in terms of the system
parameters. Finally, suggest some appropriate values of Y,
L, and so on for a suitable apparatus and plot theoretical
W versus h for these values.

D2.3 The Leary Engineering Company (see Popular Science,
November 2000, p. 14) has proposed a ship hull with
hinges that allow it to open into a flatter shape when
entering shallow water. A simplified version is shown in
Fig. D2.3. In deep water, the hull cross section would be
triangular, with large draft. In shallow water, the hinges
would open to an angle as high as # = 45°. The dashed
line indicates that the bow and stern would be closed.
Make a parametric study of this configuration for various
0, assuming a reasonable weight and center of gravity loca-
tion. Show how the draft, the metacentric height, and the
ship’s stability vary as the hinges are opened. Comment on
the effectiveness of this concept.

| L |
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VAR
/@
A4 .
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! \
Y
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Table tennis ball suspended by an air jet. The control volume momentum principle,
studied in this chapter, requires a force to change the direction of a flow. The jet flow
deflects around the ball, and the force is the ball’'s weight. (Courtesy of Paul
Silverman/Fundamental Photographs.)



3.1 Basic Physical Laws
of Fluid Mechanics

Chapter 3
Integral Relations
for a Control Volume

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking
to describe the detailed flow pattern at every point (x, y, z) in the field or (2) work-
ing with a finite region, making a balance of flow in versus flow out, and determining
gross flow effects such as the force or torque on a body or the total energy exchange.
The second is the “control volume” method and is the subject of this chapter. The
first is the “differential” approach and is developed in Chap. 4.

We first develop the concept of the control volume, in nearly the same manner as
one does in a thermodynamics course, and we find the rate of change of an arbitrary
gross fluid property, a result called the Reynolds transport theorem. We then apply
this theorem, in sequence, to mass, linear momentum, angular momentum, and
energy, thus deriving the four basic control volume relations of fluid mechanics.
There are many applications, of course. The chapter includes a special case of
frictionless, shaft-work-free momentum and energy: the Bernoulli equation. The
Bernoulli equation is a wonderful, historic relation, but it is extremely restrictive and
should always be viewed with skepticism and care in applying it to a real (viscous)
fluid motion.

It is time now to really get serious about flow problems. The fluid statics applications
of Chap. 2 were more like fun than work, at least in this writer’s opinion. Statics
problems basically require only the density of the fluid and knowledge of the posi-
tion of the free surface, but most flow problems require the analysis of an arbitrary
state of variable fluid motion defined by the geometry, the boundary conditions, and
the laws of mechanics. This chapter and the next two outline the three basic approaches
to the analysis of arbitrary flow problems:

1. Control volume, or large-scale, analysis (Chap. 3).
2. Differential, or small-scale, analysis (Chap. 4).

3. [Experimental, or dimensional, analysis (Chap. 5).
139



140 Chapter 3 Integral Relations for a Control Volume

Systems versus Control Volumes

The three approaches are roughly equal in importance. Control volume analysis, the
present topic, is accurate for any flow distribution but is often based on average or “one-
dimensional” property values at the boundaries. It always gives useful “engineering”
estimates. In principle, the differential equation approach of Chap. 4 can be applied to
any problem. Only a few problems, such as straight pipe flow, yield to exact analytical
solutions. But the differential equations can be modeled numerically, and the flourish-
ing field of computational fluid dynamics (CFD)[8] can now be used to give good esti-
mates for almost any geometry. Finally, the dimensional analysis of Chap. 5 applies to
any problem, whether analytical, numerical, or experimental. It is particularly useful to
reduce the cost of experimentation. Differential analysis of hydrodynamics began with
Euler and d’Alembert in the late eighteenth century. Lord Rayleigh and E. Buckingham
pioneered dimensional analysis at the end of the nineteenth century. The control vol-
ume was described in words, on an ad hoc one-case basis, by Daniel Bernoulli in 1753.
Ludwig Prandtl, the celebrated founder of modern fluid mechanics (Fig. 1.2), developed
the control volume as a systematic tool in the early 1900s. The writer’s teachers at M.LI.T.
introduced control volume analysis into American textbooks, for thermodynamics by
Keenan in 1941 [10], and for fluids by Hunsaker and Rightmire in 1947 [11]. For a
complete history of the control volume, see Vincenti [9].

All the laws of mechanics are written for a system, which is defined as an arbitrary
quantity of mass of fixed identity. Everything external to this system is denoted by
the term surroundings, and the system is separated from its surroundings by its bound-
aries. The laws of mechanics then state what happens when there is an interaction
between the system and its surroundings.

First, the system is a fixed quantity of mass, denoted by m. Thus the mass of the
system is conserved and does not change." This is a law of mechanics and has a very
simple mathematical form, called conservation of mass:

Mgy = const

dm
or o 0 3.1
This is so obvious in solid mechanics problems that we often forget about it. In fluid
mechanics, we must pay a lot of attention to mass conservation, and it takes a little
analysis to make it hold.
Second, if the surroundings exert a net force F on the system, Newton’s second
law states that the mass in the system will begin to accelerate:

dv d
F = =m—— =—(mV 32
ma=m o dr (mV) 3.2)
In Eq. (2.8) we saw this relation applied to a differential element of viscous incom-
pressible fluid. In fluid mechanics Newton’s second law is called the linear momentum
relation. Note that it is a vector law that implies the three scalar equations F, = ma,,
F, = ma,, and F, = ma..

'We are neglecting nuclear reactions, where mass can be changed to energy.
2We are neglecting relativistic effects, where Newton’s law must be modified.
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Third, if the surroundings exert a net moment M about the center of mass of the
system, there will be a rotation effect

H
N
dt

(3.3)
where H = 2(r X V)&m is the angular momentum of the system about its center of
mass. Here we call Eq. (3.3) the angular momentum relation. Note that it is also a
vector equation implying three scalar equations such as M, = dH /dt.

For an arbitrary mass and arbitrary moment, H is quite complicated and contains
nine terms (see, for example, Ref. 1). In elementary dynamics we commonly treat
only a rigid body rotating about a fixed x axis, for which Eq. (3.3) reduces to

M_Ii( ) (3.4)
x_xdth .

where w, is the angular velocity of the body and I, is its mass moment of inertia
about the x axis. Unfortunately, fluid systems are not rigid and rarely reduce to such
a simple relation, as we shall see in Sec. 3.6.

Fourth, if heat 6Q is added to the system or work 6W is done by the system,
the system energy dE must change according to the energy relation, or first law of
thermodynamics:

80 — W = dE
o-w="% (3.5)
or dt .

Like mass conservation, Eq. (3.1), this is a scalar relation having only a single
component.

Finally, the second law of thermodynamics relates entropy change dS to heat added
dQ and absolute temperature 7-

- %0
as = (3.6)

This is valid for a system and can be written in control volume form, but there are
almost no practical applications in fluid mechanics except to analyze flow loss details
(see Sec. 9.5).

All these laws involve thermodynamic properties, and thus we must supplement
them with state relations p = p(p, T) and e = e(p, T) for the particular fluid being
studied, as in Sec. 1.8. Although thermodynamics is not the main topic of this book,
it is very important to the general study of fluid mechanics. Thermodynamics is cru-
cial to compressible flow, Chap. 9. The student should review the first law and the
state relations, as discussed in Refs. 6 and 7.

The purpose of this chapter is to put our four basic laws into the control volume
form suitable for arbitrary regions in a flow:

1. Conservation of mass (Sec. 3.3).

2. The linear momentum relation (Sec. 3.4).
3. The angular momentum relation (Sec. 3.6).
4. The energy equation (Sec. 3.7).
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Volume and Mass Rate of Flow

Fig. 3.1 Volume rate of flow
through an arbitrary surface: (a) an
elemental area dA on the surface;
(b) the incremental volume swept
through dA equals V dt dA cos 0.

Wherever necessary to complete the analysis we also introduce a state relation such
as the perfect-gas law.

Equations (3.1) to (3.6) apply to either fluid or solid systems. They are ideal for solid
mechanics, where we follow the same system forever because it represents the product
we are designing and building. For example, we follow a beam as it deflects under load.
We follow a piston as it oscillates. We follow a rocket system all the way to Mars.

But fluid systems do not demand this concentrated attention. It is rare that we wish
to follow the ultimate path of a specific particle of fluid. Instead it is likely that the
fluid forms the environment whose effect on our product we wish to know. For the
three examples just cited, we wish to know the wind loads on the beam, the fluid
pressures on the piston, and the drag and lift loads on the rocket. This requires that
the basic laws be rewritten to apply to a specific region in the neighborhood of our
product. In other words, where the fluid particles in the wind go after they leave the
beam is of little interest to a beam designer. The user’s point of view underlies the
need for the control volume analysis of this chapter.

In analyzing a control volume, we convert the system laws to apply to a specific
region, which the system may occupy for only an instant. The system passes on, and
other systems come along, but no matter. The basic laws are reformulated to apply to
this local region called a control volume. All we need to know is the flow field in this
region, and often simple assumptions will be accurate enough (such as uniform inlet
and/or outlet flows). The flow conditions away from the control volume are then irrel-
evant. The technique for making such localized analyses is the subject of this chapter.

All the analyses in this chapter involve evaluation of the volume flow Q or mass flow
m passing through a surface (imaginary) defined in the flow.

Suppose that the surface S in Fig. 3.1a is a sort of (imaginary) wire mesh through
which the fluid passes without resistance. How much volume of fluid passes through S
in unit time? If, typically, V varies with position, we must integrate over the elemental
surface dA in Fig. 3.1a. Also, typically V may pass through dA at an angle 0 off the
normal. Let n be defined as the unit vector normal to dA. Then the amount of fluid
swept through dA in time df is the volume of the slanted parallelepiped in Fig. 3.1b:

dV =VdtdAcos O = (V -n)dAdt

Unit normal n

dA /A



3.2 The Reynolds Transport
Theorem

Fig. 3.2 Fixed, moving, and
deformable control volumes:

(a) fixed control volume for nozzle
stress analysis; (b) control volume
moving at ship speed for drag
force analysis; (c¢) control volume
deforming within cylinder for
transient pressure variation
analysis.
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The integral of dV/dr is the total volume rate of flow Q through the surface S:

0= J(V -n)dA = jV”dA 3.7
We could replace V - n by its equivalent, V,, the component of V normal to dA, but
the use of the dot product allows Q to have a sign to distinguish between inflow and
outflow. By convention throughout this book we consider n to be the outward nor-
mal unit vector. Therefore V - n denotes outflow if it is positive and inflow if nega-
tive. This will be an extremely useful housekeeping device when we are computing
volume and mass flow in the basic control volume relations.
Volume flow can be multiplied by density to obtain the mass flow m. If density
varies over the surface, it must be part of the surface integral:

m= Jp(V n)dA = Jan dA

s

If density and velocity are constant over the surface S, a simple expression results:

One-dimensional approximation: m = pQ = pAV

To convert a system analysis to a control volume analysis, we must convert our math-
ematics to apply to a specific region rather than to individual masses. This conver-
sion, called the Reynolds transport theorem, can be applied to all the basic laws.
Examining the basic laws (3.1) to (3.3) and (3.5), we see that they are all concerned
with the time derivative of fluid properties m, V, H, and E. Therefore what we need
is to relate the time derivative of a system property to the rate of change of that prop-
erty within a certain region.

The desired conversion formula differs slightly according to whether the con-
trol volume is fixed, moving, or deformable. Figure 3.2 illustrates these three cases.
The fixed control volume in Fig. 3.2a encloses a stationary region of interest to a
nozzle designer. The control surface is an abstract concept and does not hinder the
flow in any way. It slices through the jet leaving the nozzle, encloses the sur-
rounding atmosphere, and slices through the flange bolts and the fluid within the
nozzle. This particular control volume exposes the stresses in the flange bolts,

Control Control
surface surface
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Arbitrary Fixed Control Volume

Fig. 3.3 An arbitrary control vol-
ume with an arbitrary flow pattern.

which contribute to applied forces in the momentum analysis. In this sense the con-
trol volume resembles the free-body concept, which is applied to systems in solid
mechanics analyses.

Figure 3.2b illustrates a moving control volume. Here the ship is of interest, not
the ocean, so that the control surface chases the ship at ship speed V. The control
volume is of fixed volume, but the relative motion between water and ship must be
considered. If V is constant, this relative motion is a steady flow pattern, which sim-
plifies the analysis.” If V is variable, the relative motion is unsteady, so that the com-
puted results are time-variable and certain terms enter the momentum analysis to
reflect the noninertial (accelerating) frame of reference.

Figure 3.2¢ shows a deforming control volume. Varying relative motion at the
boundaries becomes a factor, and the rate of change of shape of the control volume
enters the analysis. We begin by deriving the fixed control volume case, and we con-
sider the other cases as advanced topics. An interesting history of control volume
analysis is given by Vincenti [9].

Figure 3.3 shows a fixed control volume with an arbitrary flow pattern passing through.
There are variable slivers of inflow and outflow of fluid all about the control surface.
In general, each differential area dA of surface will have a different velocity V mak-
ing a different angle 6 with the local normal to dA. Some elemental areas will have
inflow volume (VA cos 0);, dt, and others will have outflow volume (VA cos 0),,, dt,

System at
time ¢ + dt

System at

K n, Unit outward
time ¢

normal to dA

Fixed
control
volume
(&%

Arbitrary
n, Unit outward fixed
normal to d A control
surface
CS
dLVin =Vin dAin Ccos oin dt fVout = Vour dAout COS Bout dt

=-Ven dAdt =Ven dAdt

3A wind tunnel uses a fixed model to simulate flow over a body moving through a fluid. A row tank
uses a moving model to simulate the same situation.
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as seen in Fig. 3.3. Some surfaces might correspond to streamlines (6 = 90°) or solid
walls (V = 0) with neither inflow nor outflow.

Let B be any property of the fluid (energy, momentum, enthalpy, etc.) and let 8 =
dB/dm be the intensive value, or the amount of B per unit mass in any small element
of the fluid. The total amount of B in the control volume (the solid curve in Fig. 3.3)
is thus

_as

- (3.8)

BCV:J Bdm:J BpdV B
cv cv

Examining Fig. 3.3, we see three sources of changes in B relating to the control volume:

d
A change within the control volume E(J B pd°V>

(&Y

Outflow of 8 from the control volume J BpV cos 6 dA (3.9)
cs

Inflow of B to the control volume J' BpV cos 0 dA;,
cs
The notations CV and CS refer to the control volume and control surface, respec-
tively. Note, in Fig. 3.3, that the system has moved a bit, gaining the outflow sliver
and losing the inflow sliver. In the limit as dr — 0, the instantaneous change of B in
the system is the sum of the change within, plus the outflow, minus the inflow:

d d
=) == (J Bp dV) I J BpV cos 0 dAyy — J BpV cos 6 dA;, | (3.10)
dt di\Jey cs cs

This is the Reynolds transport theorem for an arbitrary fixed control volume. By
letting the property B be mass, momentum, angular momentum, or energy, we can
rewrite all the basic laws in control volume form. Note that all three of the inte-
grals are concerned with the intensive property 8. Since the control volume is fixed
in space, the elemental volumes d% do not vary with time, so that the time deriv-
ative of the volume integral vanishes unless either 8 or p varies with time
(unsteady flow).

Equation (3.10) expresses the basic formula that a system derivative equals the rate
of change of B within the control volume plus the flux of B out of the control sur-
face minus the flux of B into the control surface. The quantity B (or 8) may be any
vector or scalar property of the fluid. Two alternate forms are possible for the flux
terms. First we may notice that V cos 6 is the component of V normal to the area ele-
ment of the control surface. Thus we can write

Flux terms = J BpV, dA — J BpV, dA;, = J B dmg, — J Bdm,  (3.10a)

where dm = pV,, dA is the differential mass flux through the surface. Form (3.10a)
helps us visualize what is being calculated.
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Control Volume Moving at
Constant Velocity

Control Volume of Constant
Shape but Variable Velocity*

A second, alternative form offers elegance and compactness as advantages. If n is
defined as the outward normal unit vector everywhere on the control surface, then
V - n =1V, for outflow and V - n = —V,, for inflow. Therefore the flux terms can be
represented by a single integral involving V - n that accounts for both positive out-
flow and negative inflow:

Flux terms = j Bp(V - n)dA (3.11)
cs
The compact form of the Reynolds transport theorem is thus
d d
7 Bsys) = i BpdV |+ | Bp(V - n)dA (3.12)
! ANV cs

This is beautiful but only occasionally useful, when the coordinate system is ide-
ally suited to the control volume selected. Otherwise the computations are easier
when the flux of B out is added and the flux of B in is subtracted, according to
(3.10) or (3.11).

The time derivative term can be written in the equivalent form

d 9
Z(Lv Bp d°V> = JCVE(BP) dv (3.13)

for the fixed control volume since the volume elements do not vary.

If the control volume is moving uniformly at velocity V,, as in Fig. 3.2b, an observer
fixed to the control volume will see a relative velocity V, of fluid crossing the con-
trol surface, defined by

V,=V-YV, (3.14)

where V is the fluid velocity relative to the same coordinate system in which the
control volume motion V; is observed. Note that Eq. (3.14) is a vector subtraction.
The flux terms will be proportional to V,, but the volume integral of Eq. (3.12) is
unchanged because the control volume moves as a fixed shape without deforming.
The Reynolds transport theorem for this case of a uniformly moving control volume is

dt
which reduces to Eq. (3.12) if V, = 0.

4 B = i( f Bp d°tf) + f Bp(V, - m) dA (3.15)
dt Ccv CS

If the control volume moves with a velocity V(¢) that retains its shape, then the volume
elements do not change with time, but the boundary relative velocity V, = V(r, 1) — V(7)
becomes a somewhat more complicated function. Equation (3.15) is unchanged in
form, but the area integral may be more laborious to evaluate.

“This section may be omitted without loss of continuity.



Arbitrarily Moving and
Deformable Control Volume’

Fig. 3.4 Relative velocity effects
between a system and a control
volume when both move and
deform. The system boundaries
move at velocity V, and the control
surface moves at velocity V.
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The most general situation is when the control volume is both moving and deforming
arbitrarily, as illustrated in Fig. 3.4. The flux of volume across the control surface is
again proportional to the relative normal velocity component V, - n, as in Eq. (3.15).
However, since the control surface has a deformation, its velocity V, = V(r, ), so that
the relative velocity V, = V(r, 1) — V(r, 1) is or can be a complicated function, even
though the flux integral is the same as in Eq. (3.15). Meanwhile, the volume integral
in Eq. (3.15) must allow the volume elements to distort with time. Thus the time deriv-
ative must be applied after integration. For the deforming control volume, then, the
transport theorem takes the form

d d
gy Boys) = (va Bp CW) + LS Bp(V, - m) dA (3.16)

This is the most general case, which we can compare with the equivalent form for a
fixed control volume:

& (B = J = (B av + J Bp(V - m) dA (3.17)
cv cs
The moving and deforming control volume, Eq. (3.16), contains only two complica-
tions: (1) The time derivative of the first integral on the right must be taken outside,
and (2) the second integral involves the relative velocity V, between the fluid system
and the control surface. These differences and mathematical subtleties are best shown
by examples.

System at
CV at time ¢ + dt time ¢ + dt

System and
CV at time ¢

dV = (V,n ) dA dt

dViy=—(V, n ) dA di

SThis section may be omitted without loss of continuity.
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Fig. 3.5 A control volume with
simplified one-dimensional inlets

and exits.

One-Dimensional Flux Term

Approximations

(6%

© I

Section 2:
uniform V,, A,, p,, B,, etc. cs

All sections i:
V; approximately
normal to area A;

1M\

In many situations, the flow crosses the boundaries of the control surface only at sim-
plified inlets and exits that are approximately one-dimensional; that is, flow proper-
ties are nearly uniform over the cross section. For a fixed control volume, the surface
integral in Eq. (3.12) reduces to a sum of positive (outlet) and negative (inlet) prod-
uct terms for each cross section:

i (Bs st) = i(J :8 dm) + E Bin;li |oul - Eﬁzmz |in where n;li = ptAtVt (318)
dt Y dt cv outlets inlets

To the writer, this is an attractive way to set up a control volume analysis without
using the dot product notation. An example of multiple one-dimensional fluxes is
shown in Fig. 3.5. There are inlet flows at sections 1 and 4 and outflows at sections
2, 3, and 5. Equation (3.18) becomes

d
E(J B dm) + Ba(pAV), + B3(pAV)s + Bs(pAV)s
cv

— Bi(pAV); — B4(pAV), (3.19)

with no contribution from any other portion of the control surface because there is no
flow across the boundary.

d
E (Bsyst) =

EXAMPLE 3.1

A fixed control volume has three one-dimensional boundary sections, as shown in Fig. E3.1.
The flow within the control volume is steady. The flow properties at each section are tabu-
lated below. Find the rate of change of energy of the system that occupies the control volume
at this instant.
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Section Type p, kg/m?® V, m/s A, m? e, J/kg
1 Inlet 800 5.0 2.0 300
Inlet 800 8.0 3.0 100
3 Outlet 800 17.0 2.0 150
Solution

o System sketch: Figure E3.1 shows two inlet flows, 1 and 2, and a single outlet flow, 3.

o Assumptions: Steady flow, fixed control volume, one-dimensional inlet and exit flows.

» Approach: Apply Eq. (3.17) with energy as the property, where B =FE and 8 =
dE/dm = e. Use the one-dimensional flux approximation and then insert the data from
the table.

* Solution steps: Outlet 3 contributes a positive term, and inlets 1 and 2 are negative. The
appropriate form of Eq. (3.12) is

(©), =2 T)
— =— pdv |+ esmy — e my — exmy
dtsyst

cv
Since the flow is steady, the time-derivative volume integral term is zero. Introducing
(pAV); as the mass flow grouping, we obtain

dE
(E) = —eipi AV — epAV, + e3psAsV;
syst

Introducing the numerical values from the table, we have

(&)
dt syst

—(300 J/kg)(800 kg/m*)(2 m*)(5 m/s) — 100(800)(3)(8) + 150(800)(2)(17)

(—2,400,000 — 1,920,000 + 4,080,000) J/s
= —240,000 J/s = —0.24 MJ/s Ans.

Thus the system is losing energy at the rate of 0.24 MJ/s = 0.24 MW. Since we have
accounted for all fluid energy crossing the boundary, we conclude from the first law that
there must be heat loss through the control surface, or the system must be doing work on
the environment through some device not shown. Notice that the use of SI units leads to
a consistent result in joules per second without any conversion factors. We promised in
Chap. 1 that this would be the case.

Comments: This problem involves energy, but suppose we check the balance of mass
also. Then B = mass m, and 3 = dm/dm = unity. Again the volume integral vanishes for
steady flow, and Eq. (3.17) reduces to

dm
(7> = J p(V-m)dA = —p,A\ V) — pA;Vs + p3A3V;3
dt syst CS

—(800 kg/m*)(2 m*)(5 m/s) — 800(3)(8) + 800(17)(2)
= (—8000 — 19,200 + 27,200) kg/s = 0 kg/s

Thus the system mass does not change, which correctly expresses the law of conserva-
tion of system mass, Eq. (3.1).




150 Chapter 3 Integral Relations for a Control Volume

Average
density:0,(t)

CS expands outward
with balloon radius R(7)

E3.2

3.3 Conservation of Mass

EXAMPLE 3.2

The balloon in Fig. E3.2 is being filled through section 1, where the area is A;, velocity is
V1, and fluid density is p;. The average density within the balloon is p,(#). Find an expres-
sion for the rate of change of system mass within the balloon at this instant.

Solution

o System sketch: Figure E3.2 shows one inlet, no exits. The control volume and system
expand together, hence the relative velocity V, = 0 on the balloon surface.

o Assumptions: Unsteady flow (the control volume mass increases), deformable control
surface, one-dimensional inlet conditions.

e Approach: Apply Eq. (3.16) with V, = 0 on the balloon surface and V,, = V, at the inlet.

e Solution steps: The property being studied is mass, B = m and 8 = dm/dm = unity.
Apply Eq. (3.16). The volume integral is evaluated based on average density p;, and the
surface integral term is negative (for an inlet):

iz d d( 47 4

ZE) =£ av ) + V -ndA = —(p—R) = pAV Ans.

<dt)syst dt(Jp ) Jp( r Il) dt(pb3 ) P1 11 ns.
cs

CvV

e Comments: The relation given is the answer to the question that was asked. Actually,
by the conservation law for mass, Eq. (3.1), (dm/dt)sy = 0, and the answer could be
rewritten as

d 3
E (o» Rg) = E piA Y,

This is a first-order ordinary differential equation relating gas density and balloon radius.
It could form part of an engineering analysis of balloon inflation. It cannot be solved with-
out further use of mechanics and thermodynamics to relate the four unknowns p,,, p;, Vi,
and R. The pressure and temperature and the elastic properties of the balloon would also
have to be brought into the analysis.

For advanced study, many more details of the analysis of deformable control vol-
umes can be found in Hansen [4] and Potter et al. [5].

The Reynolds transport theorem, Eq. (3.16) or (3.17), establishes a relation between
system rates of change and control volume surface and volume integrals. But system
derivatives are related to the basic laws of mechanics, Eqgs. (3.1) to (3.5). Eliminat-
ing system derivatives between the two gives the control volume, or integral, forms
of the laws of mechanics of fluids. The dummy variable B becomes, respectively,
mass, linear momentum, angular momentum, and energy.

For conservation of mass, as discussed in Examples 3.1 and 3.2, B =m and
B = dm/dm = 1. Equation (3.1) becomes

dm d
<E>sym -0 E( J P doV) + J p(V, - n)dA (3.20)

Cv CS
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This is the integral mass conservation law for a deformable control volume. For a
fixed control volume, we have

d
J Lav o+ J p(V-n)dA =0 (3.21)
oy 01 cs
If the control volume has only a number of one-dimensional inlets and outlets, we can write
ap
J Edo‘/ + 2 (PiA; Vidou — 2 (piA;iVdin = 0 (3.22)
cv ‘ L

Other special cases occur. Suppose that the flow within the control volume is steady;
then dp/dt = 0, and Eq. (3.21) reduces to

J p(V-n)dA =0 (3.23)
cs

This states that in steady flow the mass flows entering and leaving the control vol-
ume must balance exactly.6 If, further, the inlets and outlets are one-dimensional, we
have for steady flow

2 DAV = 2 (A Dou (3.24)

This simple approximation is widely used in engineering analyses. For example, refer-
ring to Fig. 3.5, we see that if the flow in that control volume is steady, the three out-
let mass fluxes balance the two inlets:

Outflow = inflow

P2AVy + piAsVs + psAsVs = pl AVt piALY, (3.25)

The quantity pAV is called the mass fiw m passing through the one-dimensional cross
section and has consistent units of kilograms per second (or slugs per second) for SI
(or BG) units. Equation (3.25) can be rewritten in the short form

my, + my + ms=m; + my (3.26)
and, in general, the steady-flow—mass-conservation relation (3.23) can be written as

2 o = 2 (i), (3.27)

If the inlets and outlets are not one-dimensional, one has to compute m by integra-
tion over the section

Mes = J p(V - n)dA (3.28)
where “cs” stands for cross section. An illustration of this is given in Example 3.4.

SThroughout this section we are neglecting sources or sinks of mass that might be embedded in the
control volume. Equations (3.20) and (3.21) can readily be modified to add source and sink terms, but
this is rarely necessary.
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Incompressible Flow

Still further simplification is possible if the fluid is incompressible, which we may
define as having density variations that are negligible in the mass conservation
requirement.” As we saw in Chap. 1, all liquids are nearly incompressible, and gas
flows can behave as if they were incompressible, particularly if the gas velocity is
less than about 30 percent of the speed of sound of the gas.

Again consider the fixed control volume. For nearly incompressible flow, the term
dp/at is small, so the time-derivative volume integral in Eq. (3.21) can be neglected. The
constant density can then be removed from the surface integral for a nice simplification:

%(J atdu>+ JP(V'")dAIOZ JP(V'")dA=PJ(V-n)dA
C cs os &
" J (V-mdid=0 (3.29)
CS

If the inlets and outlets are one-dimensional, we have

2 Vidouw = 2 (Vid)in (3.30)
or ZQou[ = EQin

where Q; = V;A; is called the volume flw passing through the given cross section.

Again, if consistent units are used, Q = VA will have units of cubic meters per sec-
ond (SI) or cubic feet per second (BG). If the cross section is not one-dimensional,
we have to integrate

Ocs = J (V-n)dA (3.31)
cs

Equation (3.31) allows us to define an average velocity V,, that, when multiplied by
the section area, gives the correct volume flow:

v,=2-1

This could be called the volume-average velocity. If the density varies across the sec-
tion, we can define an average density in the same manner:

1
=—|pdA 3.33
Pav AJP (3.33)

But the mass flow would contain the product of density and velocity, and the average
product (pV),, would in general have a different value from the product of the averages:

1
(pV)av = ZJP(V : l'l) dA =~ pavVav (3.34)

"Be warned that there is subjectivity in specifying incompressibility. Oceanographers consider a
0.1 percent density variation very significant, while aerodynamicists may neglect density variations in
highly compressible, even hypersonic, gas flows. Your task is to justify the incompressible approxi-
mation when you make it.
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We illustrate average velocity in Example 3.4. We can often neglect the difference or,
if necessary, use a correction factor between mass average and volume average.

EXAMPLE 3.3

Write the conservation-of-mass relation for steady flow through a streamtube (flow
everywhere parallel to the walls) with a single one-dimensional inlet 1 and exit 2
(Fig. E3.3).

Solution

Streamtube
control volume

E3.3 m = p,A,V, = p,A,V, = const

For steady flow Eq. (3.24) applies with the single inlet and exit:

Thus, in a streamtube in steady flow, the mass flow is constant across every section of the
tube. If the density is constant, then

A
0 =A,V, = AV, = const or Vv, = /Tl
2

Vi
The volume flow is constant in the tube in steady incompressible flow, and the velocity

increases as the section area decreases. This relation was derived by Leonardo da Vinci
in 1500.

EXAMPLE 3.4

For steady viscous flow through a circular tube (Fig. E3.4), the axial velocity profile is given
- approximately by

u(r) #\"
= 1 ——=
— K " UO( R)

U, so that u varies from zero at the wall (r = R), or no slip, up to a maximum u = U, at the
centerline » = 0. For highly viscous (laminar) flow m = %, while for less viscous (turbulent)
flow m ~ . Compute the average velocity if the density is constant.

u =0 (no slip)

E3.4 Solution

The average velocity is defined by Eq. (3.32). Here V =iu and n =i, and thus V - n = u.
Since the flow is symmetric, the differential area can be taken as a circular strip dA = 2 #r dr.
Equation (3.32) becomes

1 1 (® r\"
Vo = *J’u dA = 72[ UO<1 = *) 2rr dr
A mR” ), R

2
Vy = Up———— A,
of Ul == @ ) s
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For the laminar flow approximation, m =~ % and V,, = 0.53U,. (The exact laminar theory
in Chap. 6 gives V,, = 0.50U,.) For turbulent flow, m =~ % and V,, = 0.82U,. (There is no
exact turbulent theory, and so we accept this approximation.) The turbulent velocity pro-
file is more uniform across the section, and thus the average velocity is only slightly less

than maximum.

Tank area A,
r- 7T 1
| I
| 2l
| | EXAMPLE 3.5
I
I El The tank in Fig. E3.5 is being filled with water by two one-dimensional inlets. Air is trapped
E H h s, —~—  at the top of the tank. The water height is 4. (@) Find an expression for the change in water
. height dh/dt. (b) Compute dh/dt it D, =1 in, D, =3 in, V| =3 ft/s, V, =2 ft/s, and
‘ A, =2 ftz, assuming water at 20°C.
i B /
T Solution
Fixed CS
E3.5 Part (a) A suggested control volume encircles the tank and cuts through the two inlets. The flow

within is unsteady, and Eq. (3.22) applies with no outlets and two inlets:

dt

d
*(J P dc‘/) —pAVI = pAY, =0
cv

)

Now if A, is the tank cross-sectional area, the unsteady term can be evaluated as

follows:

dt

d d d
= — A = _ — =
( JCV P doV) @ (pwAh) dr [Pa A(H h)} PuwA;

(@)

The p, term vanishes because it is the rate of change of air mass and is zero because the
air is trapped at the top. Substituting (2) into (1), we find the change of water height

@ _ PiAV + pAV,

dt PwA;

For water, p; = p, = p,,,» and this result reduces to

dh AV, + AV, 0+ 0,

dt A,

Part (b) The two inlet volume flows are

0, = AV, = La( 23 ft/s) = 0.016 ft/s
0, = AV, = tm(S (2 ft/s) = 0.098 ft/s

Then, from Eq. (3),

dh _ (0.016 + 0.098) ft’/s

dt 2 ft?

Suggestion: Repeat this problem with the top of the tank open.

Ans. (a)

3

Ans. (b)
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An illustration of a mass balance with a deforming control volume has already
been given in Example 3.2.

The control volume mass relations, Eq. (3.20) or (3.21), are fundamental to all fluid
flow analyses. They involve only velocity and density. Vector directions are of no con-
sequence except to determine the normal velocity at the surface and hence whether
the flow is in or out. Although your specific analysis may concern forces or moments
or energy, you must always make sure that mass is balanced as part of the analysis;
otherwise the results will be unrealistic and probably incorrect. We shall see in the
examples that follow how mass conservation is constantly checked in performing an
analysis of other fluid properties.

In Newton’s second law, Eq. (3.2), the property being differentiated is the linear
momentum mV. Therefore our dummy variable is B = mV and 8 = dB/dm = V, and
application of the Reynolds transport theorem gives the linear momentum relation for
a deformable control volume:

i(mV)Syst = DF= d(J Vp d°V> + J Vp(V, - n) dA (3.35)
dt dt - e

The following points concerning this relation should be strongly emphasized:

1. The term V is the fluid velocity relative to an inertial (nonaccelerating)
coordinate system; otherwise Newton’s second law must be modified to
include noninertial relative acceleration terms (see the end of this section).

2. The term X F is the vector sum of all forces acting on the system material
considered as a free body; that is, it includes surface forces on all fluids and
solids cut by the control surface plus all body forces (gravity and
electromagnetic) acting on the masses within the control volume.

3. The entire equation is a vector relation; both the integrals are vectors due to
the term V in the integrands. The equation thus has three components. If we
want only, say, the x component, the equation reduces to

d
> F, = E(J up d°{/> + J up(V, + n) dA (3.36)
cv cs
and similarly, 3 F, and X F, would involve v and w, respectively. Failure to
account for the vector nature of the linear momentum relation (3.35) is proba-
bly the greatest source of student error in control volume analyses.

For a fixed control volume, the relative velocity V, = V, and Eq. (3.35) becomes

>F= d(J Vpd“l/) + J Vp(V - n) dA (3.37)

dt Ccv CS

Again we stress that this is a vector relation and that V must be an inertial-frame
velocity. Most of the momentum analyses in this text are concerned with Eq. (3.37).
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One-Dimensional Momentum
Flux

Net Pressure Force on a Closed
Control Surface

Fig. 3.6 Pressure force computation
by subtracting a uniform distribu-
tion: (a) uniform pressure,

F = —paJn dA = 0;
(b) nonuniform pressure,

F= *J(p = pan dA.

By analogy with the term mass fiw used in Eq. (3.28), the surface integral in Eq. (3.37)
is called the momentum flx term. If we denote momentum by M, then

Mg = J Vp(V - n) dA (3.38)

Because of the dot product, the result will be negative for inlet momentum flux and
positive for outlet flux. If the cross section is one-dimensional, V and p are uniform
over the area and the integrated result is

Mseci = Vi(p;V,A) = mivi (3.39)

for outlet flux and —m,V; for inlet flux. Thus if the control volume has only one-
dimensional inlets and outlets, Eq. (3.37) reduces to

p , :
> F= e < va Vp d‘V) + 2 Vo = 2 V), (3.40)

This is a commonly used approximation in engineering analyses. It is crucial to realize that
we are dealing with vector sums. Equation (3.40) states that the net vector force on a fixed
control volume equals the rate of change of vector momentum within the control volume
plus the vector sum of outlet momentum fluxes minus the vector sum of inlet fluxes.

Generally speaking, the surface forces on a control volume are due to (1) forces
exposed by cutting through solid bodies that protrude through the surface and (2)
forces due to pressure and viscous stresses of the surrounding fluid. The computation
of pressure force is relatively simple, as shown in Fig. 3.6. Recall from Chap. 2 that

(a) (®)
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the external pressure force on a surface is normal to the surface and inward. Since
the unit vector n is defined as outward, one way to write the pressure force is

Foress = J p(—n) dA (3.41)
CS

Now if the pressure has a uniform value p, all around the surface, as in Fig. 3.7aq,
the net pressure force is zero:

Fup = fpa(_n) dA = —paf ndA =0 (3.42)

where the subscript UP stands for uniform pressure. This result is independent of the
shape of the surface® as long as the surface is closed and all our control volumes are
closed. Thus a seemingly complicated pressure force problem can be simplified by sub-
tracting any convenient uniform pressure p, and working only with the pieces of gage
pressure that remain, as illustrated in Fig. 3.6b. So Eq. (3.41) is entirely equivalent to

Firess = J (p = p)(=n)dA = J P g M) dA
CS CS

This trick can mean quite a savings in computation.

EXAMPLE 3.6

A control volume of a nozzle section has surface pressures of 40 Ibf/in® absolute at section 1
and atmospheric pressure of 15 Ibf/in® absolute at section 2 and on the external rounded part
of the nozzle, as in Fig. E3.6a. Compute the net pressure force if D; = 3 in and D, = 1 in.

Solution

e System sketch: The control volume is the outside of the nozzle, plus the cut sections
(1) and (2). There would also be stresses in the cut nozzle wall at section 1, which we
are neglecting here. The pressures acting on the control volume are shown in Fig. E3.6a.
Figure E3.6b shows the pressures after 15 Ibf/in” has been subtracted from all sides. Here
we compute the net pressure force only.

Jet exit pressure is atmospheric

B2
40 Ibf/in? abs 15 Ibf/in? abs 25 Ibf/in" gage

0 Ibf/in® gage

15 Ibf/in®
abs
Flow > Flow

0 Ibf/in? gage

©,
15 1bf/in® abs @
O,

E3.6 (a) ()

0 Ibf/in® gage

8Can you prove this? It is a consequence of Gauss’s theorem from vector analysis.
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Pressure Condition at a Jet Exit

Fig. 3.7 Net force on a one-
dimensional streamtube in steady
flow: (a) streamtube in steady
flow; (b) vector diagram for com-
puting net force.

o Assumptions: Known pressures, as shown, on all surfaces of the control volume.

« Approach: Since three surfaces have p = 15 1bf/in?, subtract this amount everywhere so
that these three sides reduce to zero “gage pressure” for convenience. This is allowable
because of Eq. (3.42).

e Solution steps: For the modified pressure distribution, Fig. E3.6b, only section 1 is
needed:

Ibf NI N
Foress = Poagen (M) Ay = 25irT2 —(—1i) Z(Sln) = 177i Ibf Ans.

e Comments: This “uniform subtraction” artifice, which is entirely legal, has greatly sim-
plified the calculation of pressure force. Note: We were a bit too informal when multi-
plying pressure in Ibf/in® times area in square inches. We achieved Ibf correctly, but it
would be better practice to convert all data to standard BG units. Further note: In addi-
tion t0 F ., there are other forces involved in this flow, due to tension stresses in the
cut nozzle wall and the fluid weight inside the control volume.

Figure E3.6 illustrates a pressure boundary condition commonly used for jet exit flow
problems. When a fluid flow leaves a confined internal duct and exits into an ambi-
ent “atmosphere,” its free surface is exposed to that atmosphere. Therefore the jet
itself will essentially be at atmospheric pressure also. This condition was used at
section 2 in Fig. E3.6.

Only two effects could maintain a pressure difference between the atmosphere and
a free exit jet. The first is surface tension, Eq. (1.31), which is usually negligible. The
second effect is a supersonic jet, which can separate itself from an atmosphere with
expansion or compression waves (Chap. 9). For the majority of applications, therefore,
we shall set the pressure in an exit jet as atmospheric.

EXAMPLE 3.7

A fixed control volume of a streamtube in steady flow has a uniform inlet flow (p;, Ay, V1)
and a uniform exit flow (p,, Ay, V,), as shown in Fig. 3.7. Find an expression for the net
force on the control volume.

Ven=0

mV,
Fixed XF=m(V,-V))
control
volume f)
i e
(a) )



Fig. 3.8 Net applied force on a
fixed jet-turning vane: (a) geome-
try of the vane turning the water
jet; (b) vector diagram for the net
force.

Part (a)
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Solution

Equation (3.40) applies with one inlet and exit:
EF =mVy — mVy = (0A,V)V, — (pA V)V,

The volume integral term vanishes for steady flow, but from conservation of mass in
Example 3.3 we saw that

m; = m, = m = const
Therefore a simple form for the desired result is

S F=mV,—V) Ans.

This is a vector relation and is sketched in Fig. 3.7b. The term 2, F represents the net force
acting on the control volume due to all causes; it is needed to balance the change in momen-
tum of the fluid as it turns and decelerates while passing through the control volume.

EXAMPLE 3.8

As shown in Fig. 3.8a, a fixed vane turns a water jet of area A through an angle 6 without
changing its velocity magnitude. The flow is steady, pressure is p, everywhere, and friction
on the vane is negligible. (a) Find the components F, and F), of the applied vane force. (b) Find
expressions for the force magnitude F and the angle ¢ between F' and the horizontal; plot
them versus 6.

mv F
9

—| R —
mV
®)

Solution

The control volume selected in Fig. 3.8a cuts through the inlet and exit of the jet and through
the vane support, exposing the vane force F. Since there is no cut along the vane—jet inter-
face, vane friction is internally self-canceling. The pressure force is zero in the uniform
atmosphere. We neglect the weight of fluid and the vane weight within the control volume.
Then Eq. (3.40) reduces to

Fvane = m2V2 - mIVI
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Part (b)

But the magnitude V, = V, = V as given, and conservation of mass for the streamtube
requires m; = m, = m = pAV. The vector diagram for force and momentum change
becomes an isosceles triangle with legs mV and base F, as in Fig. 3.8b. We can readily find
the force components from this diagram:

F, = mV(cos 0 — 1) F, = mVsin 0 Ans. (a)
where mV = pAV? for this case. This is the desired result.
The force magnitude is obtained from part (a):

. . 6
F = (F: + F)'> = mV[sin’0 + (cos 6 — 1)°]"* = 2mV sini Ans. (b)

E3.8

From the geometry of Fig. 3.8b we obtain

¢ = 180°—tan7‘&=90"+7 Ans. (b)
F, 2
These can be plotted versus 6 as shown in Fig. E3.8. Two special cases are of interest. First,
the maximum force occurs at § = 180°hat is, when the jet is turned around and thrown
back in the opposite direction with its momentum completely reversed. This force is 2mV
and acts to the left; that is, ¢ = 180°. Second, at very small turning angles (6 < 10°) we
obtain approximately

F~mVo ¢ = 90°
The force is linearly proportional to the turning angle and acts nearly normal to the jet. This

is the principle of a lifting vane, or airfoil, which causes a slight change in the oncoming
flow direction and thereby creates a lift force normal to the basic flow.

EXAMPLE 3.9

A water jet of velocity V; impinges normal to a flat plate that moves to the right at velocity
V., as shown in Fig. 3.9a. Find the force required to keep the plate moving at constant veloc-
ity if the jet density is 1000 kg/m’, the jet area is 3 cm?, and V; and V, are 20 and 15 m/s,
respectively. Neglect the weight of the jet and plate, and assume steady flow with respect to
the moving plate with the jet splitting into an equal upward and downward half-jet.
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Solution

The suggested control volume in Fig. 3.9a cuts through the plate support to expose the
desired forces R, and R,. This control volume moves at speed V, and thus is fixed relative
to the plate, as in Fig. 3.95. We must satisfy both mass and momentum conservation for the
assumed steady flow pattern in Fig. 3.9b. There are two outlets and one inlet, and Eq. (3.30)
applies for mass conservation:

moul = min
or p1ALV1 + prAsV, = p AV — V) (D

We assume that the water is incompressible p; = p, = p;, and we are given that A; = A, = %Aj.
Therefore Eq. (1) reduces to

Vi+ V=2V, = V) 2)

Strictly speaking, this is all that mass conservation tells us. However, from the symmetry
of the jet deflection and the neglect of gravity on the fluid trajectory, we conclude that the
two velocities V| and V, must be equal, and hence Eq. (2) becomes

V1=V2=‘/j_

V. 3)

This equality can also be predicted by Bernoulli’s equation in Sect 3.5. For the given numer-
ical values, we have

Vi=V,=20—15=5m/s
Now we can compute R, and R, from the two components of momentum conservation.

Equation (3.40) applies with the unsteady term zero:

> F, =R, = muy, + myu, — mu; 4)

77T

where from the mass analysis, m, = m, = ym; = 3p;A(V; — V.). Now check the flow direc-
tions at each section: u; = u, =0, and u; = V; — V. = 5 m/s. Thus Eq. (4) becomes

Rx == —mjuj = _I:p]Aj(‘/j - Vc)](vj - V(‘) (5)

Nozzle

Fig. 3.9 Force on a plate moving at
constant velocity: (a) jet striking a
moving plate normally; (b) control
volume fixed relative to the plate. (a) (b)
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For the given numerical values we have
R, = —(1000 kg/m*)(0.0003 m?*)(5 m/s)*> = —7.5 (kg - m)/s> = =7.5N  Ans.

This acts to the left; that is, it requires a restraining force to keep the plate from accelerat-
ing to the right due to the continuous impact of the jet. The vertical force is

F, =R, = muy, + my, — my;

Check directions again: v; = Vi, v, = — V5, v; = 0. Thus
R, = my(Vy)) + my(=V5) = 3m(V; — V) (6)

But since we found earlier that V; = V5, this means that R, = 0, as we could expect from
the symmetry of the jet deflection.” Two other results are of interest. First, the relative
velocity at section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute
motion by adding on the control-volume speed V. = 15 m/s to the right, we find that the
absolute velocity V; = 15i + 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in
Fig. 3.9a. Thus the absolute jet speed changes after hitting the plate. Second, the computed
force R, does not change if we assume the jet deflects in all radial directions along the plate
surface rather than just up and down. Since the plate is normal to the x axis, there would still
be zero outlet x-momentum flux when Eq. (4) was rewritten for a radial deflection condition.

EXAMPLE 3.10

The sluice gate in Fig. E3.10a controls flow in open channels. At sections 1 and 2, the flow
is uniform and the pressure is hydrostatic. Neglecting bottom friction and atmospheric pres-
sure, derive a formula for the horizontal force F required to hold the gate. Express your
final formula in terms of the inlet velocity V;, eliminating V5.

A Sluice
ate, width b
v ¢
F
hl — Vl
"
Va
E3.10a T

Solution

Choose a control volume, Fig. E3.10b, that cuts through known regions (section 1 and sec-
tion 2, the bottom and the atmosphere) and that cuts along regions where unknown infor-
mation is desired (the gate, with its force F).

°Symmetry can be a powerful tool if used properly. Try to learn more about the uses and misuses of
symmetry conditions.
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gage
pressure

pgh,

= —

E3.10b 7=0
Assume steady incompressible flow with no variation across the width b. The inlet and out-
let mass flows balance:

m = pVilub = pVolyb  or  V, = Vi(h/hy)

We may use gage pressures for convenience because a uniform atmospheric pressure causes
no force, as shown earlier in Fig. 3.6. With x positive to the right, equate the net horizon-
tal force to the x-directed momentum change:

SF, = ~Fue + Sghi(ib) = Sgha(hob) = in(Vz = Vy)

m = phlel

Solve for Fgye, and eliminate V, using the mass flow relation. The desired result is:

P hy . hy
Foe = 5gbh%[l - (h—l) } - ph,bv%(h—2 - 1) Ans.

This is a powerful result from a relatively simple analysis. Later, in Sec. 10.4, we will be
able to calculate the actual flow rate from the water depths and the gate opening height.

EXAMPLE 3.11

Example 3.9 treated a plate at normal incidence to an oncoming flow. In Fig. 3.10 the plate is
parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform veloc-
ity V = Upi. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.9, so the only effect is due to boundary shear, which
was neglected in the previous example. The no-slip condition at the wall brings the fluid there
to a halt, and these slowly moving particles retard their neighbors above, so that at the end of
the plate there is a significant retarded shear layer, or boundary layer, of thickness y = 6. The
viscous stresses along the wall can sum to a finite drag force on the plate. These effects are
illustrated in Fig. 3.10. The problem is to make an integral analysis and find the drag force D
in terms of the flow properties p, Up, and & and the plate dimensions L and b."

Solution

Like most practical cases, this problem requires a combined mass and momentum balance.
A proper selection of control volume is essential, and we select the four-sided region from

'"The general analysis of such wall shear problems, called boundary-layer theory, is treated in Sec. 7.3.



164 Chapter 3 Integral Relations for a Control Volume

Fig. 3.10 Control volume analysis
of drag force on a flat plate due
to boundary shear. The control
volume is bounded by sections 1,
2, 3, and 4.

p=r,
Y Streamline just Uy
outside the
shear-layer region
Uy
Oncoming _
stream o Boundary layer 3
parallel 1 g where shear stress
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0 to i to 6 to L and back to the origin 0, as shown in Fig. 3.10. Had we chosen to cut

across horizontally from left to right along the height y = /&, we would have cut through the

shear layer and exposed unknown shear stresses. Instead we follow the streamline passing

through (x, y) = (0, k), which is outside the shear layer and also has no mass flow across

it. The four control volume sides are thus

1. From (0, 0) to (0, h): a one-dimensional inlet, V - n = —U,,.

2. From (0, k) to (L, 8): a streamline, no shear, V - n = 0.

3. From (L, 8) to (L, 0): a two-dimensional outlet, V - n = +u(y).

4. From (L, 0) to (0, 0): a streamline just above the plate surface, V - n = 0, shear forces
summing to the drag force —Di acting from the plate onto the retarded fluid.

The pressure is uniform, and so there is no net pressure force. Since the flow is assumed
incompressible and steady, Eq. (3.37) applies with no unsteady term and fluxes only across
sections 1 and 3:

EFX =—-D = pj u(0, y)(V-n)dA + pJ' u(L,y) (V- n) dA
1 3

B
= pr Uo(—Up)b dy + pJ’ u(L, y)[+u(L, y)]b dy
0 0
Evaluating the first integral and rearranging give
D = pUgbh — pbr wdy |—; (1)
0
This could be considered the answer to the problem, but it is not useful because the height

h is not known with respect to the shear layer thickness 6. This is found by applying mass
conservation, since the control volume forms a streamtube:

h &
pJ (V-n)dA=0=pJ (—Uo)bdy+pJ ubdy |~
CS 0 0

5
or Uoh = J udy |x=L 2
0
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after canceling b and p and evaluating the first integral. Introduce this value of 4 into Eq. (1)
for a much cleaner result:

5
D = pr w(Uy — u)dy | -1 Ans. (3)
0

This result was fst derived by Theodore von Kéma in 1921. ' It relates the friction drag
on one side of a flat plate to the integral of the momentum defiit pu(U, — u) across the
trailing cross section of the flow past the plate. Since U, — u vanishes as y increases, the
integral has a finite value. Equation (3) is an example of momentum integral theory for
boundary layers, which is treated in Chap. 7.

For flow in a duct, the axial velocity is usually nonuniform, as in Example 3.4. For
this case the simple momentum flux calculation [up(V *n)dA = mV = pAV* is
somewhat in error and should be corrected to BpAV?, where B is the dimensionless
momentum flux correction factor, 8 = 1.

The factor 8 accounts for the variation of u® across the duct section. That is, we
compute the exact flux and set it equal to a flux based on average velocity in the duct:

p J wdA = BmV,, = BpAVz,

1 u
or B = ZJ <V_) dA (3.43a)

av

Values of B can be computed based on typical duct velocity profiles similar to
those in Example 3.4. The results are as follows:

2
4

Laminar flow: u= UO< - %) B = 3 (3.43b)
r\" 1 1
Turbulent flow: u=Uy|1l—— —=m=-
R 9 5

1+ m)’Q2 + m)’
p=Lrmrm (3.43¢)

21 + 2m)(2 + 2m)

The turbulent correction factors have the following range of values:

1 1 1 1 1
5 6 7 8 9

m
g | 1037 | 1027 | 1020 | 1016 | 1013

Turbulent fiw:

These are so close to unity that they are normally neglected. The laminar correction
is often important.

"The autobiography of this great twentieth-century engineer and teacher [2] is recommended for its
historical and scientific insight.
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Linear Momentum Tips

Noninertial Reference Frame'

To illustrate a typical use of these correction factors, the solution to Example 3.8
for nonuniform velocities at sections 1 and 2 would be modified as

> F =mB,V, — B,V) (3.43d)

Note that the basic parameters and vector character of the result are not changed at
all by this correction.

The previous examples make it clear that the vector momentum equation is more dif-
ficult to handle than the scalar mass and energy equations. Here are some momentum
tips to remember:

® The momentum relation is a vector equation. The forces and the momentum
terms are directional and can have three components. A sketch of these vectors
will be indispensable for the analysis.

® The momentum flux terms, such as il V(pV - n)dA, link two different sign con-
ventions, so special care is needed. First, the vector coefficient V will have a
sign depending on its direction. Second, the mass flow term (pV - n) will have
a sign (+, —) depending on whether it is (out, in). For example, in Fig. 3.8,
the x-components of V, and V;, u, and u,, are both positive; that is, they both
act to the right. Meanwhile, the mass flow at (2) is positive (out) and at (1) is
negative (in).

® The one-dimensional approximation, Eq. (3.40), is glorious, because non-
uniform velocity distributions require laborious integration, as in Eq. 3.11. Thus
the momentum flux correction factors 3 are very useful in avoiding this
integration, especially for pipe flow.

® The applied forces XF act on all the material in the control volume—that is,
the surfaces (pressure and shear stresses), the solid supports that are cut
through, and the weight of the interior masses. Stresses on non-control-surface
parts of the interior are self-canceling and should be ignored.

® If the fluid exits subsonically to an atmosphere, the fluid pressure there is
atmospheric.

® Where possible, choose inlet and outlet surfaces normal to the fiw, so that pres-
sure is the dominant force and the normal velocity equals the actual velocity.

Clearly, with that many helpful tips, substantial practice is needed to achieve momen-
tum skills.

All previous derivations and examples in this section have assumed that the coordi-
nate system is inertial—that is, at rest or moving at constant velocity. In this case the
rate of change of velocity equals the absolute acceleration of the system, and Newton’s
law applies directly in the form of Egs. (3.2) and (3.35).

In many cases it is convenient to use a noninertial, or accelerating, coordinate sys-
tem. An example would be coordinates fixed to a rocket during takeoff. A second
example is any flow on the earth’s surface, which is accelerating relative to the fixed

'>This section may be omitted without loss of continuity.



Fig. 3.11 Geometry of fixed versus
accelerating coordinates.

3.4 The Linear Momentum Equation 167

Particle G)\‘

d
Vil = th'

Noninertial, moving,
rotating coordinates

Inertial
coordinates

stars because of the rotation of the earth. Atmospheric and oceanographic flows expe-
rience the so-called Coriolis acceleration, outlined next. It is typically less than 10 g,
where g is the acceleration of gravity, but its accumulated effect over distances of
many kilometers can be dominant in geophysical flows. By contrast, the Coriolis
acceleration is negligible in small-scale problems like pipe or airfoil flows.

Suppose that the fluid flow has velocity V relative to a noninertial xyz coordinate
system, as shown in Fig. 3.11. Then dV/dt will represent a noninertial acceleration
that must be added vectorially to a relative acceleration a,. to give the absolute
acceleration a; relative to some inertial coordinate system XYZ, as in Fig. 3.11. Thus

av
=" ta, 3.44
a; dt Apel ( )

Since Newton’s law applies to the absolute acceleration,
dv
F - a,» - — + are
or SF —ma =m—— (3.45)

Thus Newton’s law in noninertial coordinates xyz is analogous to adding more “force”
terms —ma,, to account for noninertial effects. In the most general case, sketched in
Fig. 3.11, the term a,, contains four parts, three of which account for the angular
velocity €)(f) of the inertial coordinates. By inspection of Fig. 3.11, the absolute dis-
placement of a particle is

S, =r+R (3.46)

Differentiation gives the absolute velocity

dR
V,-=V+E+QXI‘ (3.47)
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A second differentiation gives the absolute acceleration:

dvV d°R dQ
=—+—+—Xr+20xV+Qx(@Qx 3.438
A= T A ar o r ( g G49)

By comparison with Eq. (3.44), we see that the last four terms on the right represent
the additional relative acceleration:

d’R/dr’ is the acceleration of the noninertial origin of coordinates xyz.
(dQ/dt) X r is the angular acceleration effect.
2Q x V is the Coriolis acceleration.

N NS

Q X (Q X r) is the centripetal acceleration, directed from the particle normal
to the axis of rotation with magnitude O?L, where L is the normal distance to
the axis."

Equation (3.45) differs from Eq. (3.2) only in the added inertial forces on the left-
hand side. Thus the control volume formulation of linear momentum in noninertial
coordinates merely adds inertial terms by integrating the added relative acceleration
over each differential mass in the control volume:

d
EF—J areldm=<J Vpd°f/)+J Vp(V, - n) dA (3.49)
CV dt CV CS

R dQ
where arGIZF-I—EXr-I—ZQXV—l-QX(QXr)

This is the noninertial analog of the inertial form given in Eq. (3.35). To analyze such
problems, one must know the displacement R and angular velocity  of the nonin-
ertial coordinates.

If the control volume is fixed in a moving frame, Eq. (3.49) reduces to

>F - J a, dm = %(J Vp d°V) + J Vp(V - n) dA (3.50)

Ccv Ccv CS

In other words, the right-hand side reduces to that of Eq. (3.37).

EXAMPLE 3.12

A classic example of an accelerating control volume is a rocket moving straight up, as in
Fig. E3.12. Let the initial mass be M, and assume a steady exhaust mass flow m and exhaust
velocity V, relative to the rocket, as shown. If the flow pattern within the rocket motor is
steady and air drag is neglected, derive the differential equation of vertical rocket motion
V() and integrate using the initial condition V = 0 at r = 0.

BA complete discussion of these noninertial coordinate terms is given, for example, in Ref. 4,
pp. 49-51.
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_______ _t v Solution

The appropriate control volume in Fig. E3.12 encloses the rocket, cuts through the exit jet,
and accelerates upward at rocket speed V(z). The z-momentum equation (3.49) becomes

Accelerating d
control volume E 7, = Jam dm = 7(J' w dril) + (mw),
| dt -
av . . .
or —mg — m; =0+ m(—V,) with m = m(t) = My — mt
r;,l 1
8

|
I
|
I
: The term a,.; = dV/dt of the rocket. The control volume integral vanishes because of the
| steady rocket flow conditions. Separate the variables and integrate, assuming V = 0 at ¢ = 0:
I
|
I
|
I

v t ' .
b4 . dt mt

J dV=mVeJ' %—gj dt or V(t) = —Vln(l —f)—gt Ans.
0 OMO_Wll o ¢ M0

_________ Datum This is a classic approximate formula in rocket dynamics. The first term is positive and, if the
E3.12 fuel mass burned is a large fraction of initial mass, the final rocket velocity can exceed V.
3.5 Frictionless Flow: A classic linear momentum analysis is a relation between pressure, velocity, and ele-
The Bernoulli Equation vation in a frictionless flow, now called the Bernoulli equation. It was stated (vaguely)

in words in 1738 in a textbook by Daniel Bernoulli. A complete derivation of the equa-
tion was given in 1755 by Leonhard Euler. The Bernoulli equation is very famous and
very widely used, but one should be wary of its restrictions—all fluids are viscous and
thus all flows have friction to some extent. To use the Bernoulli equation correctly,
one must confine it to regions of the flow that are nearly frictionless. This section
(and, in more detail, Chap. 8) will address the proper use of the Bernoulli relation.
Consider Fig. 3.12, which is an elemental fixed streamtube control volume of
variable area A(s) and length ds, where s is the streamline direction. The proper-
ties (p, V, p) may vary with s and time but are assumed to be uniform over the
cross section A. The streamtube orientation 6 is arbitrary, with an elevation change
dz = ds sin 0. Friction on the streamtube walls is shown and then neglected—a

Fig. 3.12 The Bernoulli equation
for frictionless flow along a
streamline: (a) forces and fluxes;
(b) net pressure force after uniform
subtraction of p. (a) (b)
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very restrictive assumption. Note that the limit of a vanishingly small area means

that the streamtube is equivalent to a streamline of the flow. Bernoulli’s equation is

valid for both and is usually stated as holding “along a streamline” in frictionless flow.
Conservation of mass [Eq. (3.20)] for this elemental control volume yields

d . . d .
—(J pdV)+mout—min=0%—pd°l/+dm
dr\ ], ot

where m = pAV and dV = A ds. Then our desired form of mass conservation is
. ap
dm = d(pAV) = _EA ds (3.51)

This relation does not require an assumption of frictionless flow.
Now write the linear momentum relation [Eq. (3.37)] in the streamwise direction:

> dF, = i(f Vp d”V) + (MV)oue — (V)i = 9 (pV) A ds + d(mV)
dt v at

where V; = V itself because s is the streamline direction. If we neglect the shear force on
the walls (frictionless flow), the forces are due to pressure and gravity. The streamwise
gravity force is due to the weight component of the fluid within the control volume:

dF = —dWsinf = —yAdssin = —yA dz

s, grav

The pressure force is more easily visualized, in Fig. 3.12b, by first subtracting a
uniform value p from all surfaces, remembering from Fig. 3.6 that the net force is
not changed. The pressure along the slanted side of the streamtube has a streamwise
component that acts not on A itself but on the outer ring of area increase dA. The net
pressure force is thus

dF,

s,press

=1dpdA — dp(A + dA) =~ —A dp

to first order. Substitute these two force terms into the linear momentum relation:

9 .
N dF, = —yAdz — Adp =~ (P Ads + d(iV)

d v . .
Za—[;VAds-i-EpAds—Fde—i- Vdm

The first and last terms on the right cancel by virtue of the continuity relation

[Eq. (3.51)]. Divide what remains by pA and rearrange into the final desired relation:
v d
Eds—l—?p-kaV-l—gdz:O (3.52)

This is Bernoulli’s equation for unsteady frictionless fiw along a streamline . It is in dif-
ferential form and can be integrated between any two points 1 and 2 on the streamline:

1% rdp 1
—ds+ | —+=(V2 -V} + —z)=0 )
«[ at s 1 0 2( 2 D) 8(z, Zy) (3.53)
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To evaluate the two remaining integrals, one must estimate the unsteady effect dV/ot
and the variation of density with pressure. At this time we consider only steady
(oV/at = 0) incompressible (constant-density) flow, for which Eq. (3.53) becomes

- 1
PPy 2= W+ e — 2 = 0
p 2
or By lVf +gn =24 lV% + gz, = const (3.54)
p 2 p 2

This is the Bernoulli equation for steady frictionless incompressible flow along a
streamline.

The Bernoulli relation, Eq. (3.54), is a classic momentum result, Newton’s law for a
frictionless, incompressible fluid. It may also be interpreted, however, as an idealized
energy relation. The changes from 1 to 2 in Eq. (3.54) represent reversible pressure
work, kinetic energy change, and potential energy change. The fact that the total
remains the same means that there is no energy exchange due to viscous dissipation,
heat transfer, or shaft work. Section 3.7 will add these effects by making a control
volume analysis of the First Law of Thermodynamics.

The Bernoulli equation is a momentum-based force relation and was derived using
the following restrictive assumptions:

1. Steady fiw: a common situation, application to most flows in this text.

2. Incompressible flw: appropriate if the flow Mach number is less than 0.3.
This restriction is removed in Chap. 9 by allowing for compressibility.

3. Frictionless fiw: restrictive—solid walls and mixing introduce friction effects.

Flow along a single streamline: different streamlines may have different “Bernoulli
constants” w, = p/p + V?/2 + gz, but this is rare. In most cases, as we shall
prove in Chap. 4, a frictionless flow region is irrotational; that is, curl(V) = 0.
For irrotational flow, the Bernoulli constant is the same everywhere.

The Bernoulli derivation does not account for possible energy exchange due to heat or
work. These thermodynamic effects are accounted for in the steady flow energy equa-
tion. We are thus warned that the Bernoulli equation may be modified by such an energy
exchange.

Figure 3.13 illustrates some practical limitations on the use of Bernoulli’s equation
(3.54). For the wind tunnel model test of Fig. 3.13a, the Bernoulli equation is valid in
the core flow of the tunnel but not in the tunnel wall boundary layers, the model surface
boundary layers, or the wake of the model, all of which are regions with high friction.

In the propeller flow of Fig. 3.13b, Bernoulli’s equation is valid both upstream and
downstream, but with a different constant w, = p/p + V*/2 + gz, caused by the work
addition of the propeller. The Bernoulli relation (3.54) is not valid near the propeller
blades or in the helical vortices (not shown, see Fig. 1.14) shed downstream of the
blade edges. Also, the Bernoulli constants are higher in the flowing “slipstream” than
in the ambient atmosphere because of the slipstream kinetic energy.

For the chimney flow of Fig. 3.13¢, Eq. (3.54) is valid before and after the fire,
but with a change in Bernoulli constant that is caused by heat addition. The Bernoulli
equation is not valid within the fire itself or in the chimney wall boundary layers.



172 Chapter 3 Integral Relations for a Control Volume

Fig. 3.13 Illustration of regions of
validity and invalidity of the
Bernoulli equation: (a) tunnel
model, (b) propeller, (¢) chimney.
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When a subsonic jet of liquid or gas exits from a duct into the free atmosphere, it
immediately takes on the pressure of that atmosphere. This is a very important bound-
ary condition in solving Bernoulli problems, since the pressure at that point is known.
The interior of the free jet will also be atmospheric, except for small effects due to
surface tension and streamline curvature.

In many incompressible-flow Bernoulli analyses, elevation changes are negligible.
Thus Eq. (3.54) reduces to a balance between pressure and kinetic energy. We can
write this as

1 2 L 5
pr + Epvl = p, + EpVZ = p, = constant

The quantity p, is the pressure at any point in the frictionless flow where the veloc-
ity is zero. It is called the stagnation pressure and is the highest pressure possible in
the flow, if elevation changes are neglected. The place where zero-velocity occurs is
called a stagnation point. For example, on a moving aircraft, the front nose and the
wing leading edges are points of highest pressure. The pressures p; and p, are called
static pressures, in the moving fluid. The grouping (1/2)pV?* has dimensions of pres-
sure and is called the dynamic pressure. A popular device called a Pitot-static tube
(Fig. 6.30) measures (p, — p) and then calculates V from the dynamic pressure.

Note, however, that one particular zero-velocity condition, no-slip flow along a
fixed wall, does not result in stagnation pressure. The no-slip condition is a frictional
effect, and the Bernoulli equation does not apply.



Fig. 3.14 Hydraulic and energy
grade lines for frictionless flow in
a duct.
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A useful visual interpretation of Bernoulli’s equation is to sketch two grade lines of
a flow. The energy grade line (EGL) shows the height of the total Bernoulli constant
hy=z+ply+ VZ/(Zg). In frictionless flow with no work or heat transfer [Eq. (3.54)]
the EGL has constant height. The hydraulic grade line (HGL) shows the height
corresponding to elevation and pressure head z + p/y—that is, the EGL minus the
velocity head V*/(2g). The HGL is the height to which liquid would rise in a piezome-
ter tube (see Prob. 2.11) attached to the flow. In an open-channel flow the HGL is
identical to the free surface of the water.

Figure 3.14 illustrates the EGL and HGL for frictionless flow at sections 1 and 2
of a duct. The piezometer tubes measure the static pressure head z + p/y and thus
outline the HGL. The pitot stagnation-velocity tubes measure the total head z + p/y +
V?/(2g), which corresponds to the EGL. In this particular case the EGL is constant,
and the HGL rises due to a drop in velocity.

In more general flow conditions, the EGL will drop slowly due to friction losses
and will drop sharply due to a substantial loss (a valve or obstruction) or due to
work extraction (to a turbine). The EGL can rise only if there is work addition (as
from a pump or propeller). The HGL generally follows the behavior of the EGL
with respect to losses or work transfer, and it rises and/or falls if the velocity
decreases and/or increases.

As mentioned before, no conversion factors are needed in computations with the
Bernoulli equation if consistent SI or BG units are used, as the following examples
will show.

In all Bernoulli-type problems in this text, we consistently take point 1 upstream
and point 2 downstream.
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EXAMPLE 3.13

Find a relation between nozzle discharge velocity V, and tank free surface height 4 as in
Fig. E3.13. Assume steady frictionless flow.

V2
2
| EGL

h=21-2
— ENCURE
Open jet:
P2=Paq
E3.13
Solution

As mentioned, we always choose point 1 upstream and point 2 downstream. Try to choose
points 1 and 2 where maximum information is known or desired. Here we select point 1 as
the tank free surface, where elevation and pressure are known, and point 2 as the nozzle
exit, where again pressure and elevation are known. The two unknowns are V; and V.

Mass conservation is usually a vital part of Bernoulli analyses. If A, is the tank cross
section and A, the nozzle area, this is approximately a one-dimensional flow with constant
density, Eq. (3.30):

A1V1 = A2V2 (1)
Bernoulli’s equation (3.54) gives

%+%V?+gzl=%+%V§+gZz

But since sections 1 and 2 are both exposed to atmospheric pressure p; = p, = p,, the pres-
sure terms cancel, leaving

Vi — Vi =2g(z; — 7o) = 2gh )
Eliminating V; between Eqgs. (1) and (2), we obtain the desired result:

2gh

Vi=—75
2T — AYA?

Ans. (3)

Generally the nozzle area A, is very much smaller than the tank area A;, so that the ratio
A3/A? is doubly negligible, and an accurate approximation for the outlet velocity is

V, = (2gh)"? Ans. (4)
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This formula, discovered by Evangelista Torricelli in 1644, states that the discharge veloc-
ity equals the speed that a frictionless particle would attain if it fell freely from point 1 to
point 2. In other words, the potential energy of the surface fluid is entirely converted to
kinetic energy of efflux, which is consistent with the neglect of friction and the fact that no
net pressure work is done. Note that Eq. (4) is independent of the fluid density, a charac-
teristic of gravity-driven flows.

Except for the wall boundary layers, the streamlines from 1 to 2 all behave in the same
way, and we can assume that the Bernoulli constant A is the same for all the core flow.
However, the outlet flow is likely to be nonuniform, not one-dimensional, so that the aver-
age velocity is only approximately equal to Torricelli’s result. The engineer will then adjust
the formula to include a dimensionless discharge coeffiient ¢ ,:

2 _ . ogm” s)

V) =
( Z)dv Az

As discussed in Sec. 6.12, the discharge coefficient of a nozzle varies from about 0.6 to 1.0
as a function of (dimensionless) flow conditions and nozzle shape.

Many Bernoulli, and also steady flow energy, problems involve liquid flow from a
large tank or reservoir, as in Example 3.13. If the outflow is small compared to the
volume of the tank, the surface of the tank hardly moves. Therefore these problems
are analyzed assuming zero velocity at the tank surface. The pressure at the top of the
tank or reservoir is assumed to be atmospheric.

Before proceeding with more examples, we should note carefully that a solution
by Bernoulli’s equation (3.54) does not require a second control volume analysis, only
a selection of two points 1 and 2 along a given streamline. The control volume was
used to derive the differential relation (3.52), but the integrated form (3.54) is valid
all along the streamline for frictionless flow with no heat transfer or shaft work, and
a control volume is not necessary.

A classical Bernoulli application is the familiar process of siphoning a fluid from
one container to another. No pump is involved; a hydrostatic pressure difference pro-
vides the motive force. We analyze this in the following example.

EXAMPLE 3.14

Consider the water siphon shown in Fig. E3.14. Assuming that Bernoulli’s equation is valid,
(a) find an expression for the velocity V, exiting the siphon tube. (b) If the tube is 1 cm in
diameter and z; = 60 cm, z, = —25 cm, z3 = 90 cm, and z; = 35 cm, estimate the flow rate
. 3

in cm’/s.

Bm=—m

Zp---

Fy——o

E3.14 \ v,
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Solution

e Assumptions: Frictionless, steady, incompressible flow. Write Bernoulli’s equation starting
from where information is known (the surface, z;) and proceeding to where information
is desired (the tube exit, z,).

Note that the velocity is approximately zero at z;, and a streamline goes from z; to z,.
Note further that p; and p, are both atmospheric, p = p.m, and therefore cancel. (a) Solve
for the exit velocity from the tube:

7= m Ans. (a)

The velocity exiting the siphon increases as the tube exit is lowered below the tank sur-
face. There is no siphon effect if the exit is at or above the tank surface. Note that z; and
z4 do not directly enter the analysis. However, z3 should not be too high because the pres-
sure there will be lower than atmospheric, and the liquid might vaporize. (b) For the given
numerical information, we need only z; and z, and calculate, in SI units,

V, = V2(9.81 m/s)[0.6 m — (—0.25) m] = 4.08 m/s

0 = VoA, = (4.08 m/s)(7/4)(0.01 m)*> = 321 E — 6 m*/s = 321 cm’/s Ans. (b)

e Comments: Note that this result is independent of the density of the fluid. As an exercise,
you may check that, for water (998 kg/m?), p5 is 11,300 Pa below atmospheric pressure.
In Chap. 6 we will modify this example to include friction effects.

EXAMPLE 3.15

A constriction in a pipe will cause the velocity to rise and the pressure to fall at section 2
in the throat. The pressure difference is a measure of the flow rate through the pipe. The
smoothly necked-down system shown in Fig. E3.15 is called a venturi tube. Find an expres-
sion for the mass flux in the tube as a function of the pressure change.

E3.15

Solution

Bernoulli’s equation is assumed to hold along the center streamline:

%+%V?+gm:% +2V3+ gz
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If the tube is horizontal, z; = z, and we can solve for V,:

2 Ap

Vi-Vi= Ap=p, —p, (1)

We relate the velocities from the incompressible continuity relation:
AV =AYV,

> D,
or V=BV, B= H 2
1

Combining (1) and (2), we obtain a formula for the velocity in the throat:

zAp 1/2
v, = | —=2_ 3
2 {p(l —ﬁ“J &)

The mass flux is given by

2 A 1/2
p p) @

1-p
This is the ideal frictionless mass flux. In practice, we measure M,ca = CyqMigeas and coT-
relate the dimensionless discharge coefficient c,.

n:l = pA2V2 = Az(

EXAMPLE 3.16

A 10-cm fire hose with a 3-cm nozzle discharges 1.5 m*/min to the atmosphere. Assum-
ing frictionless flow, find the force Fp exerted by the flange bolts to hold the nozzle on
the hose.

Solution

We use Bernoulli’s equation and continuity to find the pressure p; upstream of the nozzle,
and then we use a control volume momentum analysis to compute the bolt force, as in
Fig. E3.16.

N
r————— - 1r <—|E_ o\ 0
| B | \\(
d | B I : (
Water: : | \lq_
1000 kg/m3 Pa=0 (gage) 1>, I 0
- Jl— : —
I D,=3cm %
| 2 1 | //\/\
[ 258 <_|E_ H / 0
D;=10cm qg1p l\ - < 7
L il

CV Control volume
(a) ()

E3.16
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3.6 The Angular Momentum
Theorem™

The flow from 1 to 2 is a constriction exactly similar in effect to the venturi in Example 3.15,
for which Eq. (1) gave

pr=p2tp(V5 = VD) (1)
The velocities are found from the known flow rate Q = 1.5 m*/min or 0.025 m?/s:

(0] 0.025 m*/s

V=2 =208 354
2T A, (w/4)(0.03 m) s

0 0.025mYs
V=== =280 o
'TA T (@401 my e

We are given p, = p, = 0 gage pressure. Then Eq. (1) becomes
p1 = 31000 kg/m?)[(35.4% — 3.2)m%s?]
= 620,000 kg/(m - s?) = 620,000 Pa gage

The control volume force balance is shown in Fig. E3.16b:

EEx = —Fp + pA;

and the zero gage pressure on all other surfaces contributes no force. The x-momentum flux is
+mV, at the outlet and —mV/, at the inlet. The steady flow momentum relation (3.40) thus gives

—Fp + pA; = m(V, — V)
or Fp=piAy — m(V, — V) (2)
Substituting the given numerical values, we find

m = pQ = (1000 kg/m*)(0.025 m*/s) = 25 kg/s

oy = 2 2
A= ZDI = Z(O.l m)~ = 0.00785 m

Fjz = (620,000 N/m?)(0.00785 m?) — (25 kg/s)[(35.4 — 3.2)m/s]
= 4872 N — 805 (kg - m)/s> = 4067 N (915 Ibf) Ans.

Notice from these examples that the solution of a typical problem involving

Bernoulli’s equation almost always leads to a consideration of the continuity equation
as an equal partner in the analysis. The only exception is when the complete velocity
distribution is already known from a previous or given analysis, but that means the
continuity relation has already been used to obtain the given information. The point is

that the continuity relation is always an important element in a flow analysis.

A control volume analysis can be applied to the angular momentum relation, Eq. (3.3),

by letting our dummy variable B be the angular-momentum vector H. However, since the

system considered here is typically a group of nonrigid fluid particles of variable velocity,
the concept of mass moment of inertia is of no help, and we have to calculate the

'“This section may be omitted without loss of continuity.
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instantaneous angular momentum by integration over the elemental masses dm. If O is
the point about which moments are desired, the angular momentum about O is given by

H, = J (r X V)dm (3.55)
syst
where r is the position vector from O to the elemental mass dm and V is the velocity
of that element. The amount of angular momentum per unit mass is thus seen to be

dH
= C=rxV
P dm r
The Reynolds transport theorem (3.16) then tells us that
dH d
° =— {J (rx V)p dﬂ/} + J (r X V)p(V,-n)dA (3.56)
dt syst dt Ccv cs

for the most general case of a deformable control volume. But from the angular momen-
tum theorem (3.3), this must equal the sum of all the moments about point O applied
to the control volume

‘%": >SM,= > xF),

Note that the total moment equals the summation of moments of all applied forces about
point O. Recall, however, that this law, like Newton’s law (3.2), assumes that the particle
velocity V is relative to an inertial coordinate system. If not, the moments about point
O of the relative acceleration terms a,.; in Eq. (3.49) must also be included:

>SM,= > xF), - J (r X a,) dm (3.57)

Ccv

where the four terms constituting a,.; are given in Eq. (3.49). Thus the most general
case of the angular momentum theorem is for a deformable control volume associated
with a noninertial coordinate system. We combine Egs. (3.56) and (3.57) to obtain

d
E(er)n—J (rxa,el)dm=EH

Ccv Ccv

(rx V)p doi/} +J (r x V)p(V, - n)dA
@ (3.58)

For a nondeformable inertial control volume, this reduces to

+ J (r X V)p(V - n) dA (3.59)

CS

)
EMO_azH (r X V)pdV
CV

Further, if there are only one-dimensional inlets and exits, the angular momentum flux
terms evaluated on the control surface become

J (r X V)p(V-n)dA = 3 (r X VguMou — 2, (€ X Vg, (3.60)
CS

Although at this stage the angular momentum theorem can be considered a sup-
plementary topic, it has direct application to many important fluid flow problems
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involving torques or moments. A particularly important case is the analysis of rotat-
ing fluid flow devices, usually called turbomachines (Chap. 11).

EXAMPLE 3.17

As shown in Fig. E3.17a, a pipe bend is supported at point A and connected to a flow sys-
tem by flexible couplings at sections 1 and 2. The fluid is incompressible, and ambient pres-
sure p, is zero. (a) Find an expression for the torque 7 that must be resisted by the support
at A, in terms of the flow properties at sections 1 and 2 and the distances %, and h,. (b) Com-
pute this torque if D; = D, = 3 in, p; = 100 Ibf/in gage, p» = 80 Ibf/in* gage, V; = 40 fi/s,
hy =2 in, by = 10 in, and p = 1.94 slugs/ft>.

@© AT
hy
i Vi, Al ——

P = constant

***** —\— V2. Anps
E3.17a @

Solution

Part (a) The control volume chosen in Fig. E3.17b cuts through sections 1 and 2 and through the
support at A, where the torque 7 is desired. The flexible couplings description specifies
that there is no torque at either section 1 or 2, and so the cuts there expose no moments.
For the angular momentum terms r X V, r should be taken from point A to sections 1 and
2. Note that the gage pressure forces p;A; and p,A, both have moments about A. Equation
(3.59) with one-dimensional flux terms becomes

EMA =T, +r; X (=pAny) + 1y, X (=p,An,)
= (r; X Vo)(+mg,) + (r; X V)(—my,) (D

Figure E3.17¢ shows that all the cross products are associated with either r; sin 8, = h; or
5 sin 6, = h,, the perpendicular distances from point A to the pipe axes at 1 and 2. Remem-
ber that m;, = m,, from the steady flow continuity relation. In terms of counterclockwise
moments, Eq. (1) then becomes

T, + pAhy — pAshy = m(h,V, — hyVy) 2
Rewriting this, we find the desired torque to be
Ty = hy(prA; + mVy) — hy(piA; + mV)) Ans. (a) (3)

counterclockwise. The quantities p; and p, are gage pressures. Note that this result is inde-
pendent of the shape of the pipe bend and varies only with the properties at sections 1 and
2 and the distances h; and h,."

SIndirectly, the pipe bend shape probably affects the pressure change from p; to p,.
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+
: =h,V,
I
|
I
I
\ |
| ! .
L | Ih, =r, sin6,
Nt L J O,
cv @ rx V,=hV,
E3.17b E3.17¢
Part (b) For the numerical example, convert all data to BG units:
. Ibf Ibf Ibf Ibf
Dl = Dz = 3in = 0.25 ft P = 10011172 = 14,400@ Dy = 8011172 = 11,520@
. 2 . 10 slug
h; = 2in :Eft hZZIOIHZEft p =194 P

The inlet and exit areas are the same, A; = A, = (7/4)(0.25 ft)*> = 0.0491 ft*. Since the den-
sity is constant, we conclude from mass conservation, pA;V; = pA,V,, that V; = V, = 40 ft/s.
The mass flow is

. I fi 1
m=pAV, = (1.94 %)(0.0491 ft2)<40 7) — 38128
S S

e Evaluation of the torque: The data can now be substituted into Eq. (3):

10 Ibf 2 slug ft
Ty =|—=ft)/{ 11,520 — )(0.0491 ft") + ( 3.81 — || 40 —
12 ft S S

2 Ibf 2 slug ft

— | —=ft ]| { 14,400 — )(0.0491 ft") + ( 3.81 — J{ 40 —

12 ft S S

= 598 ft - Ibf — 143 ft - Ibf = 455 ft - Ibf counterclockwise Ans. (b)

e Comments: The use of standard BG units is crucial when combining dissimilar terms,
such as pressure times area and mass flow times velocity, into proper additive units for a
numerical solution.

EXAMPLE 3.18

Figure 3.15 shows a schematic of a centrifugal pump. The fluid enters axially and passes
through the pump blades, which rotate at angular velocity w; the velocity of the fluid is
changed from V; to V, and its pressure from p; to p,. (a) Find an expression for the torque
T, that must be applied to these blades to maintain this flow. (b) The power supplied to the
pump would be P = wT,. To illustrate numerically, suppose r; = 0.2 m, r, = 0.5 m, and
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Fig. 3.15 Schematic of a simplified

centrifugal pump.

Part (a)

b = 0.15 m. Let the pump rotate at 600 r/min and deliver water at 2.5 m*/s with a density
of 1000 kg/m>. Compute the torque and power supplied.

Width b ——‘ L—

Solution

The control volume is chosen to be the annular region between sections 1 and 2 where the
flow passes through the pump blades (see Fig. 3.15). The flow is steady and assumed incom-
pressible. The contribution of pressure to the torque about axis O is zero since the pressure
forces at 1 and 2 act radially through O. Equation (3.59) becomes

E M, =T, = (r; X Vomgy — (r; X Vm, (D
where steady flow continuity tells us that

My, = pVai2mrb = Moy = pVi2mrb = pQ
The cross product r X V is found to be clockwise about O at both sections:

r, XV, =nV,sin90°k = r,V,k clockwise
r, XV, =rV,;k clockwise
Equation (1) thus becomes the desired formula for torque:
T, = pQ(ryVp — nVik clockwise Ans. (a) (2a)

This relation is called Eulers turbine formula . In an idealized pump, the inlet and outlet
tangential velocities would match the blade rotational speeds V,; = wr; and V,, = wr,. Then
the formula for torque supplied becomes

T, = pOQw () clockwise (2b)



Part (b)

@ Absolute outlet

- velocity
-~

\
// /V J|_> V2 = Voi - Rowi
/ /

I -
| [
| |
| |
| |
| |
R :
| I oV
Ly :/
| | Retarding
: : torque T
|
| |
~q !
7N
(0] | °0 /I X

Inlet velocity

V= 2
Apipe

Fig. 3.16 View from above of a
single arm of a rotating lawn
sprinkler.
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Convert o to 600(277/60) = 62.8 rad/s. The normal velocities are not needed here but fol-
low from the flow rate

0 2.5m%s
V, = = =133/
" mrd  2w(0.2 m)(0.15 m) s
25
Q =53 m/s

Vie = prb ~ 22(05)(0.15)
For the idealized inlet and outlet, tangential velocity equals tip speed:
Vi, = wr; = (62.8 rad/s)(0.2 m) = 12.6 m/s
Vin = wr, = 62.8(0.5) = 31.4 m/s
Equation (2a) predicts the required torque to be
T, = (1000 kg/m*)(2.5 m*/s)[(0.5 m)(31.4 m/s) — (0.2 m)(12.6 m/s)]
= 33,000 (kg - m*)/s> = 33,000 N - m Ans.
The power required is
P = 0T, = (62.8 rad/s)(33,000 N - m) = 2,070,000 (N - m)/s
= 2.07 MW (2780 hp) Ans.

In actual practice the tangential velocities are considerably less than the impeller-tip speeds,
and the design power requirements for this pump may be only 1 MW or less.

EXAMPLE 3.19

Figure 3.16 shows a lawn sprinkler arm viewed from above. The arm rotates about O at
constant angular velocity w. The volume flux entering the arm at O is Q, and the fluid is
incompressible. There is a retarding torque at O, due to bearing friction, of amount —7 k.
Find an expression for the rotation w in terms of the arm and flow properties.

Solution

The entering velocity is Vok, where Vi = Q/A .. Equation (3.59) applies to the control vol-
ume sketched in Fig. 3.16 only if V is the absolute velocity relative to an inertial frame.
Thus the exit velocity at section 2 is

V, = Vyi — Rwi
Equation (3.59) then predicts that, for steady flow,

DM, = —Tk = (r; X Vy)igy — (£ X Vi), )]
where, from continuity, ., = m;, = pQ. The cross products with reference to point O are
r, X Vo, = Rj X (Vo — Rw)i = (R0 — RVpk

r XV, =0j x Vok =0
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3.7 The Energy Equation'®

Equation (1) thus becomes

—T,k = pO(R’w — RVp)k
Ve U

0 = R pQRz Ans.

The result may surprise you: Even if the retarding torque 7, is negligible, the arm rotational
speed is limited to the value V,/R imposed by the outlet speed and the arm length.

As our fourth and final basic law, we apply the Reynolds transport theorem (3.12) to
the first law of thermodynamics, Eq. (3.5). The dummy variable B becomes energy
E, and the energy per unit mass is 8 = dE/dm = e. Equation (3.5) can then be writ-
ten for a fixed control volume as follows:'’

%_%V:%:%<J epd“V)+J ep(V - n) dA (3.61)
cv cs
Recall that positive Q denotes heat added to the system and positive W denotes work
done by the system.
The system energy per unit mass e may be of several types:

€ = Cinternal + €Xinetic + epotential + €other

where e, could encompass chemical reactions, nuclear reactions, and electrostatic
or magnetic field effects. We neglect e, here and consider only the first three terms
as discussed in Eq. (1.9), with z defined as “up™:

e=0+ 3V + gz (3.62)

The heat and work terms could be examined in detail. If this were a heat transfer
book, dQ/dt would be broken down into conduction, convection, and radiation effects
and whole chapters written on each (see, for example, Ref. 3). Here we leave the term
untouched and consider it only occasionally.

Using for convenience the overdot to denote the time derivative, we divide the
work term into three parts:

W= Wshaft + Wpress + inscous stresses Ws + Wp + Wv

The work of gravitational forces has already been included as potential energy in Eq.
(3.62). Other types of work, such as those due to electromagnetic forces, are excluded
here.

The shaft work isolates the portion of the work that is deliberately done by a
machine (pump impeller, fan blade, piston, or the like) protruding through the control
surface into the control volume. No further specification other than W, is desired at
this point, but calculations of the work done by turbomachines will be performed in
Chap. 11.

'6This section should be read for information and enrichment even if you lack formal background in
thermodynamics.

The energy equation for a deformable control volume is rather complicated and is not discussed
here. See Refs. 4 and 5 for further details.
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The rate of work Wp done by pressure forces occurs at the surface only; all work
on internal portions of the material in the control volume is by equal and opposite
forces and is self-canceling. The pressure work equals the pressure force on a small
surface element dA times the normal velocity component into the control volume:

AW, = —(p dA)V,, iy = —p(=V + n) dA

The total pressure work is the integral over the control surface:

W, = J p(V - n) dA (3.63)
CS

A cautionary remark: If part of the control surface is the surface of a machine part,
we prefer to delegate that portion of the pressure to the shaft work term W;, not to
W,, which is primarily meant to isolate the fluid flow pressure work terms.

Finally, the shear work due to viscous stresses occurs at the control surface and
consists of the product of each viscous stress (one normal and two tangential) and the
respective velocity component:

dW, = —7 -V dA

or W, = —J 7+ VdA (3.64)
CS

where 7 is the stress vector on the elemental surface dA. This term may vanish or be
negligible according to the particular type of surface at that part of the control volume:

Solid surface. For all parts of the control surface that are solid confining walls,
V =0 from the viscous no-slip condition; hence W, = zero identically.

Surface of a machine. Here the viscous work is contributed by the machine, and so
we absorb this work in the term W,

An inlet or outlet. At an inlet or outlet, the flow is approximately normal to the
element dA; hence the only viscous work term comes from the normal stress
TmV, dA. Since viscous normal stresses are extremely small in all but rare
cases, such as the interior of a shock wave, it is customary to neglect viscous
work at inlets and outlets of the control volume.

Streamline surface. If the control surface is a streamline such as the upper curve
in the boundary layer analysis of Fig. 3.11, the viscous work term must be
evaluated and retained if shear stresses are significant along this line. In the
particular case of Fig. 3.11, the streamline is outside the boundary layer, and
viscous work is negligible.

The net result of this discussion is that the rate-of-work term in Eq. (3.61) con-
sists essentially of

W=W5+J

p(V +-n)dA — J (7 V) dA (3.65)
cs

CS

where the subscript SS stands for stream surface. When we introduce (3.65) and (3.62)
into (3.61), we find that the pressure work term can be combined with the energy flux
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One-Dimensional Energy-Flux
Terms

E3.20

term since both involve surface integrals of V - n. The control volume energy equa-
tion thus becomes

. . . F

Q—WS—W,,:—U epd°V)+ J (e+’—’)p(v-n)dA (3.66)
I\ Jey cs p

Using e from (3.62), we see that the enthalpy 4= 7 + p/p occurs in the control surface

integral. The final general form for the energy equation for a fixed control volume

becomes

. . . 9 N
0-W, - W”:a_rH <ﬁ+éV2+gz)pd°‘/}+J (h+§v2+gz)p(v-n)dA
(6% CS

(3.67)

As mentioned, the shear work term WU is rarely important.

If the control volume has a series of one-dimensional inlets and outlets, as in Fig. 3.5,
the surface integral in (3.67) reduces to a summation of outlet fluxes minus inlet
fluxes:

J’ (h + 3V2 + gz)p(V - n) dA
cs

= 2 (il + %VZ + gZ)outmoul - E (i/\l + %VZ + gZ)inmin (368)

where the values of A, %Vz, and gz are taken to be averages over each cross section.

EXAMPLE 3.20

A steady flow machine (Fig. E3.20) takes in air at section 1 and discharges it at sections 2
and 3. The properties at each section are as follows:

Section A, ft? 0, ft’/s T,F p, Ibf/in® abs z, ft
1 0.4 100 70 20 1.0
2 1.0 40 100 30 4.0
3 0.25 50 200 ? 15

Work is provided to the machine at the rate of 150 hp. Find the pressure ps3 in 1bf/in” absolute
and the heat transfer Q in Btu/s. Assume that air is a perfect gas with R = 1716 and
¢, = 6003 ft-Ibf/(slug - °R).

Solution

o System sketch: Figure E3.20 shows inlet 1 (negative flux) and outlets 2 and 3 (positive
fluxes).

o Assumptions: Steady flow, one-dimensional inlets and outlets, ideal gas, negligible shear work.
The flow is not incompressible. Note that Q; # O, + Q3 because the densities are different.
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* Approach: Evaluate the velocities and densities and enthalpies and substitute into Eq. (3.67).
Use BG units for all properties, including the pressures. With Q; given, we evaluate V; = Q/A;:

0 100fes _ft v _40fess i v _50fcs it
"TA 041 s 2 L0ft s 3025 1 s
The densities at sections 1 and 2 follow from the ideal gas law:
20 X 144) Ibf/ft> 1
pr=LL (20 X 14%) = 0.00317 -2
RT,  [1716 ft-1bf/(slug’R) ][ (70 + 460)°R] ft
(30 X 144) slug
=———————— = 0.00450 —-
P2~ (1716)(100 + 460) e

However, p; is unknown, so how do we find p;? Use the steady flow continuity relation:

my = my + my or p101 = P20 + p30; ()
slug ft? slug
0.00317 0 100 . = 0.00450(40) + p;(50) solve for p; = 0.00274 o

Knowing p; enables us to find p3 from the ideal-gas law:

ft-1bf R Ibf Ibf
— (200 + 460°R) = 3100 — = 21.57—5 Ans.
slug °R ft in

slug
p3 = p3RT; = 0.00274ft73 1716

e Final solution steps: For an ideal gas, simply approximate enthalpies as /; = c,T;. The
shaft work is negative (into the control volume) and viscous work is neglected for this
solid-wall machine:

: : ft-1bf ft-1bf
W,=0 W, = (—150 hp)(550 S hp> = —82,500 S (work on the system)

For steady flow, the volume integral in Eq. (3.67) vanishes, and the energy equation becomes
0 = W, = —my(c,Ty + 3V + g2) + ma(c,T> + 3V3 + g2) + ma(c,Ts + 3V3 + 82)  (2)
From our continuity calculations in Eq. (1) above, the mass flows are

. I . 1
my = p0; = (0.00317)(100) = 03178 1, = p,0, = 0.180 -2
S S

my = p30s = 0.137SITllg

It is instructive to separate the flux terms in the energy equation (2) for examination:
Enthalpy flux = c,(—m, T} + myT, + msT3)

(6003)[(—0.317)(530) + (0.180)(560) + (0.137)(660)]

—1,009,000 + 605,000 + 543,000 =~ +139,000 ft-1bf/s

Kinetic energy flux = 1(—m, Vi + m,V3 + msV3)
= 1[—-0.317(250)* + (0.180)(40)* + (0.137)(200)*]
= —9900 + 140 + 2740 =~ —7000 ft-1bf/s
Potential energy flux = g(—m,z; + myz, + msz3)
= (32.2)[—0.317(1.0) + 0.180(4.0) + 0.137(1.5)]
= —10 + 23 + 7 = +20 ft-Ibf/s
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Equation (2) may now be evaluated for the heat transfer:

Q — (—82,500) = 139,000 — 7,000 + 20

0 (+ I ft-lbf)( 1 Btu ) e Btu A
~ - = ns.
e : s J\778.2 feIbf s s

e Comments: The heat transfer is positive, which means info the control volume. It is typi-
cal of gas flows that potential energy flux is negligible, enthalpy flux is dominant, and kinetic
energy flux is small unless the velocities are very high (that is, high subsonic or supersonic).

The Steady Flow Energy Equation For steady flow with one inlet and one outlet, both assumed one-dimensional,
Eq. (3.67) reduces to a celebrated relation used in many engineering analyses. Let
section 1 be the inlet and section 2 the outlet. Then

Q = W, = W, = —my(hy +5Vi + gz)) + ma(hy +5V5 + g22)  (3.69)
But, from continuity, m, = m, = m, we can rearrange (3.65) as follows:
hl + §V1 +gz = (hz + §V2 +80) —qtw +w, (3.70)

where ¢ = Q/m = dQ/dm, the heat transferred to the fluid per unit mass. Similarly,
wy = Wm = dWi/dm and w, = W,/m = dW,/dm. Equation (3.70) is a general form
of the steady fiw energy equation, which states that the upstream stagnation enthalpy
H, = (h + $V* + gz), differs from the downstream value H, only if there is heat
transfer, shaft work, or viscous work as the fluid passes between sections 1 and 2.
Recall that ¢ is positive if heat is added to the control volume and that w, and w,, are
positive if work is done by the fluid on the surroundings.

Each term in Eq. (3.70) has the dimensions of energy per unit mass, or velocity
squared, which is a form commonly used by mechanical engineers. If we divide through
by g, each term becomes a length, or head, which is a form preferred by civil engineers.
The traditional symbol for head is 4, which we do not wish to confuse with enthalpy.
Therefore we use internal energy in rewriting the head form of the energy relation:

b Vi e Y
Yy 8§ 2 Y &

iz —hytho+h, (371
g

where h, = q/g, hy = w,/g, and h, = w,/g are the head forms of the heat added, shaft
work done, and viscous work done, respectively. The term p/vy is called pressure head,
and the term V?/2g is denoted as velocity head.

Friction and Shaft Work in A common application of the steady flow energy equation is for low-speed (incom-

Low-Speed Flow pressible) flow through a pipe or duct. A pump or turbine may be included in the
pipe system. The pipe and machine walls are solid, so the viscous work is zero.
Equation (3.71) may be written as

o) PP
(P1+1+ ) (Pz+&+Z2>+w (372)
Y 2 Y 2 8
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Every term in this equation is a length, or head. The terms in parentheses are the upstream
(1) and downstream (2) values of the useful or available head or total head of the flow,
denoted by A . The last term on the right is the difference (hy; — hq,), which can include
pump head input, turbine head extraction, and the friction head loss h, always positive.
Thus, in incompressible flow with one inlet and one outlet, we may write

V2 Ve
(p P = T Z) = <p + =+ Z> + hfrictinn - hpump + hturbine (373)
Y 2g in Y 28 out

Most of our internal flow problems will be solved with the aid of Eq. (3.73). The &
terms are all positive; that is, friction loss is always positive in real (viscous) flows,
a pump adds energy (increases the left-hand side), and a turbine extracts energy from
the flow. If 4, and/or A, are included, the pump and/or turbine must lie between points
1 and 2. In Chaps. 5 and 6 we shall develop methods of correlating /1, losses with
flow parameters in pipes, valves, fittings, and other internal flow devices.

EXAMPLE 3.21

Gasoline at 20°C is pumped through a smooth 12-cm-diameter pipe 10 km long, at a fiw
rate of 75 m*/h (330 gal/min). The inlet is fed by a pump at an absolute pressure of 24 atm.
The exit is at standard atmospheric pressure and is 150 m higher. Estimate the frictional
head loss i, and compare it to the velocity head of the flow V?/(2g). (These numbers are
quite realistic for liquid flow through long pipelines.)

Solution

e Property values: From Table A.3 for gasoline at 20°C, p = 680 kg/m3, or
v = (680)(9.81) = 6670 N/m”>.

* Assumptions: Steady flow. No shaft work, thus , = h, = 0. If z; = 0, then z, = 150 m.

* Approach: Find the velocity and the velocity head. These are needed for comparison.
Then evaluate the friction loss from Eq. (3.73).

 Solution steps: Since the pipe diameter is constant, the average velocity is the same
everywhere:

Q Q0 _ (75m’h)/(3600 s/h)
A (@HD>  (w/4)0.12 m)?

m
Vi = Vo = ~ 1.84 —
S

. V2 (1.84 m/s)’
Velocity head = — =

== 0173
22 20981 m/s) o

Substitute into Eq. (3.73) and solve for the friction head loss. Use pascals for the pres-
sures and note that the velocity heads cancel because of the constant-area pipe.

2 2

@+ﬁ+zm:@+h+zmﬂ+hf
vy 2 0 2g
(24)(101,350 N/m?) 101,350 N/m>
+013m+0m=—r—— 4+0.173m + 150m + &
6670 N/m® MU= 76670 Nim® m m

or hy = 364.7 — 15.2 — 150 =~ 199 m Ans.
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Part (a)

The friction head is larger than the elevation change Az, and the pump must drive the flow
against both changes, hence the high inlet pressure. The ratio of friction to velocity head is

hy  199m
V2(2g) 0.173m

~ 1150

Ans.

e Comments: This high ratio is typical of long pipelines. (Note that we did not make direct
use of the 10,000-m pipe length, whose effect is hidden within £;.) In Chap. 6 we can state
this problem in a more direct fashion: Given the flow rate, fluid, and pipe size, what inlet pres-
sure is needed? Our correlations for /2, will lead to the estimate pjy e = 24 atm, as stated here.

EXAMPLE 3.22

Air [R = 1716, ¢, = 6003 ft - 1bf/(slug - °R)] ws steadily, as shown in Fig. E3.22, through
a turbine that produces 700 hp. For the inlet and exit conditions shown, estimate (a) the

exit velocity V, and (b) the heat transferred Q in Btu/h.

/ W, = 700 hp
9 | 9

—_— Turbomachine —_—
D, =6in / D,=6in
py = 150 Ib/in? Py =40 Ib/in?
T,=300°F Q7 T,=35°F
E3.22 V, = 100 fi/s

Solution

The inlet and exit densities can be computed from the perfect-gas law:
Cop 150(144)
RT, 1716(460 + 300)

Cpy 40(144)
P> RT, T 1716460 + 35)

P = 0.0166 slug/ft*

= 0.00679 slug/ft®
The mass flow is determined by the inlet conditions

) 6\
m = p,A,V, = (0.0166) g(ﬁ) (100) = 0.325 slug/s

Knowing mass flow, we compute the exit velocity

. a6V
m = 0.325 = p,A,V, = (0.00679) 2\12 V,

or V, = 244 ft/s

Ans. (a)
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Kinetic Energy Correction Factor
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The steady flow energy equation (3.69) applies with WU =0,z = zp,and i = c,T:
Q - Ws = m(cpTZ + %V% - CpTl - %V%)

Convert the turbine work to foot-pounds-force per second with the conversion factor 1 hp =
550 ft - 1bt/s. The turbine work W; is positive

0 — 700(550) = 0.325[6003(495) + 1(244)2 — 6003(760) — 3(100)?]
= —510,000 ft - Ibf/s

or Q = —125,000 ft - Ibf/s
Convert this to British thermal units as follows:

: 3600 s/h
= (125,000 ft - Ibf/s) ——2
Q = (125,000t 1617s) = of/Bru

= —578,000 Btu/h Ans. (b)

The negative sign indicates that this heat transfer is a /oss from the control volume.

Often the flow entering or leaving a port is not strictly one-dimensional. In particu-
lar, the velocity may vary over the cross section, as in Fig. E3.4. In this case the
kinetic energy term in Eq. (3.68) for a given port should be modified by a dimen-
sionless correction factor a so that the integral can be proportional to the square of
the average velocity through the port:
J GVIp(V - m)dA = a3V )m
port

1
where Vo = ZJ“ dA for incompressible flow

If the density is also variable, the integration is very cumbersome; we shall not treat
this complication. By letting u# be the velocity normal to the port, the first equation
above becomes, for incompressible flow,

épfbﬁdA =3 paVy,A

1 u \
or a=—||—]dA (3.74)
AJ\Vy

The term « is the kinetic energy correction factor, having a value of about 2.0 for
fully developed laminar pipe flow and from 1.04 to 1.11 for turbulent pipe flow. The
complete incompressible steady flow energy equation (3.73), including pumps, turbines,
and losses, would generalize to

o o
<p + Vz + Z) = (p + V2 + Z> + hturbinc - hpump + hfriction (375)
P8 2g in P8 2g out
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where the head terms on the right (h,, h,, hy) are all numerically positive. All addi-
tive terms in Eq. (3.75) have dimensions of length {L}. In problems involving tur-
bulent pipe flow, it is common to assume that & = 1.0. To compute numerical values,
we can use these approximations to be discussed in Chap. 6:

2
Laminar flow: u= Uo{l - <é> }
from which Vo = 0.5U,
and a=20 (3.76)
Turbulent flow: ~U<1—1>m -1
urbulent flow: u S R m 2
from which, in Example 3.4,
2U,
Vv, = =0
(1 +m)2 + m)
Substituting into Eq. (3.74) gives
1+ m’2 +m)’
o = L EmeEm (3.77)
4(1 + 3m)(2 + 3m)
and numerical values are as follows:
m | s | s |3 | s | s
Turbulent fiw:
« | riwos | 1077 | 1o0ss | roas | 1037

These values are only slightly different from unity and are often neglected in ele-
mentary turbulent flow analyses. However, « should never be neglected in laminar
flow.

EXAMPLE 3.23

A hydroelectric power plant (Fig. E3.23) takes in 30 m’/s of water through its turbine and
discharges it to the atmosphere at V, = 2 m/s. The head loss in the turbine and penstock
system is hy = 20 m. Assuming turbulent flow, @ =~ 1.06, estimate the power in MW
extracted by the turbine.

Solution

We neglect viscous work and heat transfer and take section 1 at the reservoir surface
(Fig. E3.23), where V| = 0, p; = paum. and z; = 100 m. Section 2 is at the turbine
outlet.



3.7 The Energy Equation

7 =100m

% = Om
E3.23

Turbine

The steady flow energy equation (3.75) becomes, in head form,

1% 1%
Bl Gy 2 2t b+ by
Yy 2
Pa , 10607

7. . 1.06(2.0 m/s)>
+ 100 m = =* +
v 209.81) Y

+0m+h + 20
209.81 m/sY) T o

The pressure terms cancel, and we may solve for the turbine head (which is positive)
h, =100 — 20 — 0.2 = 79.8 m
The turbine extracts about 79.8 percent of the 100-m head available from the dam. The total
power extracted may be evaluated from the water mass flow:
P = mw, = (pQ)(gh,) = (998 kg/m>)(30 m*/s)(9.81 m/s*)(79.8 m)
= 234 E6 kg m%/s® = 234 E6 N - m/s = 23.4 MW Ans.

The turbine drives an electric generator that probably has losses of about 15 percent, so the
net power generated by this hydroelectric plant is about 20 MW.

EXAMPLE 3.24

The pump in Fig. E3.24 delivers water (62.4 Ibf/ft®) at 1.5 ft*/s to a machine at section 2,
which is 20 ft higher than the reservoir surface. The losses between 1 and 2 are given by

py = 14.7 Ibf/in> abs

— Machine
v | ©

Water — é Pump
E3.24

h (negative)

)= 20 ft
p, = 10 Ibf/in?

193
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hy = KV%/(Zg), where K = 7.5 is a dimensionless loss coefficient (see Sec. 6.7). Take @ = 1.07.
Find the horsepower required for the pump if it is 80 percent efficient.

Solution

 System sketch: Figure E3.24 shows the proper selection for sections 1 and 2.
o Assumptions: Steady flow, negligible viscous work, large reservoir (V; = 0).
* Approach: First find the velocity V, at the exit, then apply the steady flow energy equation.
* Solution steps:  Use BG units, p; = 14.7(144) = 2117 Ibf/ft* and p, = 10(144) = 1440 Ibf/ft*.

Find V, from the known flow rate and the pipe diameter:

[0) 1.5 ft¥/s

V,=—=—>="""
2T A, (W32 fi)?

= 30.6 ft/s

The steady flow energy equation (3.75), with a pump (no turbine) plus z; = 0 and V; = 0,

becomes
p‘+alv+ﬂ p2+a2V§+ h, + hy h KV%
Py P\ A , _ 2
y y 2 P T
— VZ
or hp=‘lu+z2+(a2+10—2
Y 2g

e Comment: The pump must balance four different effects: the pressure change, the ele-
vation change, the exit jet kinetic energy, and the friction losses.
e Final solution: For the given data, we can evaluate the required pump head:

1440 — 2117) Ibf/ft? 30.6 ft/s)?
po={ ) 420+ (1.07 + 7.5) )

b 62.4 Ibf/ft?

————— = —11 +20 + 124 = 133 ft
2(32.2 ft/s%)

With the pump head known, the delivered pump power is computed similar to the turbine
in Example 3.23:

) Ibf ft®
Ppymp = mwy = yOh,, = 62.4ft—3 1.5 . (133 ft)

ft — Ibf 12,450 ft-1bf/s
550 ft-1bf/(s—hp)

= 12450 =226 hp

If the pump is 80 percent efficient, then we divide by the efficiency to find the input power
required:

_ Pump  _ 226hp

p =
U efficiency 0.80

= 28.3hp Ans.

e Comment: The inclusion of the kinetic energy correction factor « in this case made a
difference of about 1 percent in the result. The friction loss, not the exit jet, was the dom-
inant parameter.




Summary

Problems

Problems 195

This chapter has analyzed the four basic equations of fluid mechanics: conservation
of (1) mass, (2) linear momentum, (3) angular momentum, and (4) energy. The equa-
tions were attacked “in the large”—that is, applied to whole regions of a flow. As
such, the typical analysis will involve an approximation of the flow field within the
region, giving somewhat crude but always instructive quantitative results. However,
the basic control volume relations are rigorous and correct and will give exact results
if applied to the exact flow field.

There are two main points to a control volume analysis. The first is the selection
of a proper, clever, workable control volume. There is no substitute for experience,
but the following guidelines apply. The control volume should cut through the place
where the information or solution is desired. It should cut through places where max-
imum information is already known. If the momentum equation is to be used, it should
not cut through solid walls unless absolutely necessary, since this will expose possi-
ble unknown stresses and forces and moments that make the solution for the desired
force difficult or impossible. Finally, every attempt should be made to place the con-
trol volume in a frame of reference where the flow is steady or quasi-steady, since
the steady formulation is much simpler to evaluate.

The second main point to a control volume analysis is the reduction of the analy-
sis to a case that applies to the problem at hand. The 24 examples in this chapter give
only an introduction to the search for appropriate simplifying assumptions. You will
need to solve 24 or 124 more examples to become truly experienced in simplifying
the problem just enough and no more. In the meantime, it would be wise for the
beginner to adopt a very general form of the control volume conservation laws and
then make a series of simplifications to achieve the final analysis. Starting with the
general form, one can ask a series of questions:

Is the control volume nondeforming or nonaccelerating?

Is the flow field steady? Can we change to a steady flow frame?
Can friction be neglected?

Is the fluid incompressible? If not, is the perfect-gas law applicable?
Are gravity or other body forces negligible?

Is there heat transfer, shaft work, or viscous work?

Are the inlet and outlet flows approximately one-dimensional?

Sl IS U S i

Is atmospheric pressure important to the analysis? Is the pressure hydrostatic on
any portions of the control surface?

9. Are there reservoir conditions that change so slowly that the velocity and time
rates of change can be neglected?

In this way, by approving or rejecting a list of basic simplifications like these, one
can avoid pulling Bernoulli’s equation off the shelf when it does not apply.

Most of the problems herein are fairly straightforward. More dif- end-of-chapter problems P3.1 to P3.185 (categorized in the
ficult or open-ended assignments are labeled with an asterisk. problem list here) are followed by word problems W3.1 to W3.7,
Problems labeled with an EES icon will benefit from the use  fundamentals of engineering (FE) exam problems FE3.1 to
of the Engineering Equation Solver (EES), while figures with a  FE3.10, comprehensive problems C3.1 to C3.5, and design project
computer icon % may require the use of a computer. The standard  D3.1.
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Problem Distribution

Section Topic Problems
3.1 Basic physical laws; volume flow P3.1-P3.5
32 The Reynolds transport theorem P3.6-P3.9
33 Conservation of mass P3.10-P3.38
34 The linear momentum equation P3.39-P3.109
3.5 The Bernoulli equation P3.110-P3.148
3.6 The angular momentum theorem P3.149-P3.164
3.7 The energy equation P3.165-P3.185

Basic physical laws; volume filw

P3.1

P3.2

P3.3

P3.4

P3.5

Discuss Newton’s second law (the linear momentum rela-
tion) in these three forms:

EF=ma

>F :%(j Vpd“V)

system

d
EF—EWW

Are they all equally valid? Are they equivalent? Are some
forms better for fluid mechanics as opposed to solid
mechanics?

Consider the angular momentum relation in the form

4

2 M, = dt

What does r mean in this relation? Is this relation valid
in both solid and fluid mechanics? Is it related to the lin-
ear momentum equation (Prob. 3.1)? In what manner?
For steady low-Reynolds-number (laminar) flow through a
long tube (see Prob. 1.12), the axial velocity distribution
is given by u = C(R*> — ), where R is the tube radius and
r = R. Integrate u(r) to find the total volume flow Q
through the tube.

A fire hose has a 5-in inside diameter and water is flowing
at 600 gal/min. The flow exits through a nozzle contrac-
tion with a diameter D,,. For steady flow, what should D,
be, in inches, to create an average exit velocity of 25 m/s?
Water at 20°C flows through a 5-in-diameter smooth pipe
at a high Reynolds number, for which the velocity profile
is approximated by u = U,(y/R)""®, where U, is the cen-
terline velocity, R is the pipe radius, and y is the distance
measured from the wall toward the centerline. If the cen-
terline velocity is 25 ft/s, estimate the volume flow rate
in gallons per minute.

[ exvp]

system

The Reynolds transport theorem

P3.6

When a gravity-driven liquid jet issues from a slot in a
tank, as in Fig. P3.6, an approximation for the exit veloc-

P3.7

P3.8

P3.9

ity distribution is u = V2g(h — z), where h is the depth
of the jet centerline. Near the slot, the jet is horizontal,
two-dimensional, and of thickness 2L, as shown. Find a
general expression for the total volume flow Q issuing
from the slot; then take the limit of your result if L < h.

i<

P3.6

A spherical tank, of diameter 35 cm, is leaking air through
a 5-mm-diameter hole in its side. The air exits the hole at
360 m/s and a density of 2.5 kg/m>. Assuming uniform
mixing, (@) find a formula for the rate of change of aver-
age density in the tank and () calculate a numerical value
for (dp/dt) in the tank for the given data.

Three pipes steadily deliver water at 20°C to a large exit
pipe in Fig. P3.8. The velocity V, =5 m/s, and the exit
flow rate Q, = 120 m>/h. Find (a) V;, (b) V5, and (¢) V,
if it is known that increasing Qs by 20 percent would
increase Q4 by 10 percent.

~O D;=6cm

D,=5cm

—

P3.8 e D;=4cm

A laboratory test tank contains seawater of salinity S and
density p. Water enters the tank at conditions (S;, p;, Ay,
V1) and is assumed to mix immediately in the tank. Tank
water leaves through an outlet A, at velocity V. If salt is
a “‘conservative” property (neither created nor destroyed),
use the Reynolds transport theorem to find an expression
for the rate of change of salt mass Mg, within the tank.

Conservation of mass

P3.10 Water flowing through an 8-cm-diameter pipe enters a

porous section, as in Fig. P3.10, which allows a uniform



P3.11

P3.12

P3.13

P3.14

radial velocity v,, through the wall surfaces for a distance
of 1.2 m. If the entrance average velocity V; is 12 m/s,
find the exit velocity V, if (a) v,, = 15 cm/s out of the
pipe walls or (b) v,, = 10 cm/s into the pipe. (¢) What
value of v,, will make V, = 9 m/s?

Vw
N C—
V| — I | —_—V,
S 4
I 12m I D=8cm
P3.10

The inlet section of a vacuum cleaner is a rectangle, 1 in
by 5 in. The blower is able to provide suction at 25 cubic
feet per minute. (a) What is the average velocity at the
inlet, in m/s? (b) If conditions are sea level standard, what
is the mass flow of air, in kg/s?

The pipe flow in Fig. P3.12 fills a cylindrical surge tank
as shown. At time ¢ = 0, the water depth in the tank is
30 cm. Estimate the time required to fill the remainder of

the tank.
D=75cm
\V4 1m
—_— ——
Vi=25m/s d=12cm V,=19m/s
P3.12

The cylindrical container in Fig. P3.13 is 20 cm in
diameter and has a conical contraction at the bottom
with an exit hole 3 cm in diameter. The tank contains
fresh water at standard sea-level conditions. If the water
surface is falling at the nearly steady rate dh/dt =
—0.072 m/s, estimate the average velocity V out of the
bottom exit.

The open tank in Fig. P3.14 contains water at 20°C and is
being filled through section 1. Assume incompressible flow.
First derive an analytic expression for the water-level
change dh/dt in terms of arbitrary volume flows (Q;, O»,
(03) and tank diameter d. Then, if the water level & is con-
stant, determine the exit velocity V, for the given data
V, =3 m/s and Q5 = 0.01 m%/s.

P3.15

P3.16
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hvd -
D h(1)
P3.1\3 *— V?
J
l 05 =0.01 m3/s
v
D;=5cm 4 ;
D,=7cm
Water
P3.14 I‘— d 4"

Water, assumed incompressible, flows steadily through the
round pipe in Fig. P3.15. The entrance velocity is con-
stant, u = U, and the exit velocity approximates turbu-
lent flow, u = uma(1 — r/R)"’7. Determine the ratio
Uo/uax for this flow.

> >
> r e —
I -T— ————————— | u(r)
>  ——
> —
=% o
x= x=L
P3.15

An incompressible fluid flows past an impermeable flat
plate, as in Fig. P3.16, with a uniform inlet profile u = U,
and a cubic polynomial exit profile

g — 3
u = UO(%) where 7 =%



198 Chapter 3 Integral Relations for a Control Volume

P3.17

P3.18

Compute the volume flow Q across the top surface of the
control volume.

U, y=90 7/ 0? U,

Cubic
Solid plate, width b into paper

P3.16

Incompressible steady flow in the inlet between parallel
plates in Fig. P3.17 is uniform, u = U, = 8 cm/s, while
downstream the flow develops into the parabolic laminar
profile u = az(zo — z), where a is a constant. If z, = 4 cm
and the flid is SAE 30 oil at 20°C, what is the value of
Upmax 10 c/s?

=2

UO >) U max

P3.17

An incompressible fluid flows steadily through the rec-
tangular duct in Fig. P3.18. The exit velocity profile is
given approximately by

2 2
o33

(a) Does this profile satisfy the correct boundary condi-
tions for viscous fluid flow? (b) Find an analytical expres-
sion for the volume flow Q at the exit. (¢) If the inlet flow
is 300 ft>/min, estimate Umax i M/s for b = h = 10 cm.

Inlet flow

\ L
2h

X, U

P3.18

P3.19

P3.20

P3.21

P3.22

P3.23

Water from a storm drain flows over an outfall onto a
porous bed that absorbs the water at a uniform vertical
velocity of 8 mm/s, as shown in Fig. P3.19. The system
is 5 m deep into the paper. Find the length L of the bed
that will completely absorb the storm water.

_ Intial depth =20 cm

P3.19

Oil (SG = 0.89) enters at section 1 in Fig. P3.20 at a
weight flow of 250 N/h to lubricate a thrust bearing. The
steady oil flow exits radially through the narrow clear-
ance between thrust plates. Compute (a) the outlet

volume flux in mL/s and (b) the average outlet velocity
in cm/s.

[«—— D=10cm ——
h =2 mm
75

%
o

g @%

1 D=3 mm
For the two-port tank in Fig. E3.5, let the dimensions
remain the same, but assume V, = 3 ft/s and that V| is
unknown. If the water surface is rising at a rate of 1 in/s,
(a) determine the average velocity at section 1. (b) Is the
flow at section 1 in or out?
The converging—diverging nozzle shown in Fig. P3.22
expands and accelerates dry air to supersonic speeds at
the exit, where p, = 8 kPa and 7, = 240 K. At the throat,
p1 = 284 kPa, T} = 665 K, and V| = 517 m/s. For steady
compressible flow of an ideal gas, estimate (a) the mass
flow in kg/h, (b) the velocity V5, and (c) the Mach num-
ber Ma,.
The hypodermic needle in Fig. P3.23 contains a liquid
serum (SG = 1.05). If the serum is to be injected steadily
at 6 cm’/s, how fast in in/s should the plunger be

P3.20



Dy=1cm
D,=25cm
P3.22
D;=0.751in
D, =0.030 in
8 —_— —_—V,

*P3.24

P3.25

P3.26

P3.23

advanced (a) if leakage in the plunger clearance is neg-
lected and (b) if leakage is 10 percent of the needle flow?
Water enters the bottom of the cone in Fig. P3.24 at a uni-
formly increasing average velocity V = Kt. If d is very
small, derive an analytic formula for the water surface rise
h(t) for the condition 7 =0 at r = 0. Assume incom-
pressible flow.

|
|
|

o ! o
| Diameter d
|
|

1

As will be discussed in Chaps. 7 and 8, the flow of a stream
U, past a blunt flat plate creates a broad low-velocity wake
behind the plate. A simple model is given in Fig. P3.25,
with only half of the flow shown due to symmetry. The
velocity profile behind the plate is idealized as “dead air”
(near-zero velocity) behind the plate, plus a higher veloc-
ity, decaying vertically above the wake according to the
variation u = Uy + AU e~ “F, where L is the plate height
and z = 0 is the top of the wake. Find AU as a function
of stream speed U,.

A thin layer of liquid, draining from an inclined plane, as
in Fig. P3.26, will have a laminar velocity profile u =
Uo(2ylh — yz/hz), where U is the surface velocity. If the

V=Kt
P3.24

P3.27

P3.28
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Uo

[a]

/ Exponential curve

Width b “
into paper U+ AU
JEiS N e, N
L Dead air (negligible velocity)
2
e - - —
P3.25
8 y
/ <
u(y)
6
X
P3.26

plane has width b into the paper, determine the volume
rate of flow in the film. Suppose that 2z = 0.5 in and the
flow rate per foot of channel width is 1.25 gal/min. Esti-
mate U, in ft/s.

Consider a highly pressurized air tank at conditions (p,
po> Tp) and volume vy. In Chap. 9 we will learn that, if
the tank is allowed to exhaust to the atmosphere through
a well-designed converging nozzle of exit area A, the out-
going mass flow rate will be

. apoA
m=——

VRT,

This rate persists as long as pg is at least twice as large
as the atmospheric pressure. Assuming constant 7 and an
ideal gas, (a) derive a formula for the change of density
po(?) within the tank. (b) Analyze the time At required for
the density to decrease by 25 percent.

Air, assumed to be a perfect gas from Table A.4, flows
through a long, 2-cm-diameter insulated tube. At section
1, the pressure is 1.1 MPa and the temperature is 345 K.
At section 2, 67 meters further downstream, the density
is 1.34 kg/m’, the temperature 298 K, and the Mach

where o = 0.685 for air
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number is 0.90. For one-dimensional flow, calculate
(a) the mass flow; (b) p,; (c) V,; and (d) the change in
entropy between 1 and 2. (e) How do you explain the
entropy change?

In elementary compressible flow theory (Chap. 9), com-
pressed air will exhaust from a small hole in a tank at
the mass flow rate m = Cp, where p is the air density in
the tank and C is a constant. If p, is the initial density
in a tank of volume ', derive a formula for the density
change p(#) after the hole is opened. Apply your formula
to the following case: a spherical tank of diameter 50 cm,
with initial pressure 300 kPa and temperature 100°C,
and a hole whose initial exhaust rate is 0.01 kg/s.
Find the time required for the tank density to drop by
50 percent.

A hollow conical container, standing point-down, is 1.2 m
high and has a total included cone angle of 80°. It is being
filled with water from a hose at 50 gallons per minute.
How long will it take to fill the cone?

A bellows may be modeled as a deforming wedge-
shaped volume as in Fig. P3.31. The check valve on the
left (pleated) end is closed during the stroke. If b is the
bellows width into the paper, derive an expression for
outlet mass flow m, as a function of stroke 6(t).

P3.31

P3.32 Water at 20°C fiws steadily through the piping junction

in Fig. P3.32, entering section 1 at 20 gal/min. The aver-
age velocity at section 2 is 2.5 m/s. A portion of the flow
is diverted through the showerhead, which contains 100
holes of 1-mm diameter. Assuming uniform shower flow,
estimate the exit velocity from the showerhead jets.

P3.33

P3.34

P3.35

d=4cm

d=15cm
‘\,/ /d=20m

3

2) -—— ~ (D)

P3.32

In some wind tunnels the test section is perforated to suck
out fluid and provide a thin viscous boundary layer. The
test section wall in Fig. P3.33 contains 1200 holes of
5-mm diameter each per square meter of wall area. The
suction velocity through each hole is Vy = 8 m/s, and the
test-section entrance velocity is V; = 35 m/s. Assuming
incompressible steady fiw of air at 20°C, compute
(@) Vo, (b) V>, and (c) V, in m/s.

Test section
D,=0.8m

D;=22m | Uniform suction

1 V) -— Vo <—

et

A rocket motor is operating steadily, as shown in
Fig. P3.34. The products of combustion flowing out the
exhaust nozzle approximate a perfect gas with a molecular
weight of 28. For the given conditions calculate V, in ft/s.

P3.33

Liquid oxygen:
0.5 slug/s

ot

4000° R
400 Ibf/in

2 — >

Liquid fuel:
1 0.1 slug/s

®

P3.34

In contrast to the liquid rocket in Fig. P3.34, the solid-
propellant rocket in Fig. P3.35 is self-contained and has
no entrance ducts. Using a control volume analysis for the
conditions shown in Fig. P3.35, compute the rate of mass



P3.36

P3.37

loss of the propellant, assuming that the exit gas has a
molecular weight of 28.

Propellant
Exit section
Combustion: —— ?: : ;g Er}?a
1500 K, 950 kPa V, =1150 m/s
T, =750K
Propellant
P3.35

The jet pump in Fig. P3.36 injects water at U; = 40 m/s
through a 3-in-pipe and entrains a secondary flow of water
U, = 3 m/s in the annular region around the small pipe.
The two flows become fully mixed downstream, where Us
is approximately constant. For steady incompressible
flow, compute U in m/s.

Mixing
region

Fully

Inlet mixed

=S
——]
SC

Dy =3in

b _.
[

P3.36

If the rectangular tank full of water in Fig. P3.37 has its
right-hand wall lowered by an amount 6, as shown, water
will flow out as it would over a weir or dam. In Prob.
P1.14 we deduced that the outflow Q would be given by

0 = Chg"s*
where b is the tank width into the paper, g is the accel-
eration of gravity, and C is a dimensionless constant.
Assume that the water surface is horizontal, not slightly
curved as in the figure. Let the initial excess water level
be 8,. Derive a formula for the time required to reduce
the excess water level to (a) 6,/10 and (b) zero.

|

—r—

P3.37

P3.38
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An incompressible fluid in Fig. P3.38 is being squeezed
outward between two large circular disks by the uniform
downward motion V,, of the upper disk. Assuming one-
dimensional radial outflow, use the control volume shown
to derive an expression for V(r).

Vo

Cv CcvV

h(t)

|— r—>|

—=V(r)?

R

Fixed circular disk

P3.38

The linear momentum equation

P3.39

P3.40

A wedge splits a sheet of 20°C water, as shown in Fig.
P3.39. Both wedge and sheet are very long into the
paper. If the force required to hold the wedge stationary
is F = 124 N per meter of depth into the paper, what is
the angle 0 of the wedge?

6 m/s
6 m/s
— F
4 cm
6 m/s
P3.39

The water jet in Fig. P3.40 strikes normal to a fixed plate.
Neglect gravity and friction, and compute the force F in
newtons required to hold the plate fixed.

' — Plate

Dj=10cm
— ~— F

V/.=8m/s

P3.40
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P3.41 In Fig. P3.41 the vane turns the water jet completely

P3.42

P3.43

around. Find an expression for the maximum jet velocity
Vp if the maximum possible support force is Fj.

Py Vo Dy —=

P3.41

A liquid of density p flows through the sudden contrac-
tion in Fig. P3.42 and exits to the atmosphere. Assume
uniform conditions (p, Vi, D;) at section 1 and (p,, V>, D»)
at section 2. Find an expression for the force F exerted
by the fluid on the contraction.

]

|

Atmosphere :

1% A <—|— I

<—|—pl

|

|

|
®

®

Water at 20°C fiws through a 5-cm-diameter pipe that
has a 180° vertical bend, as in Fig. P3.43. The total length
of pipe between flanges 1 and 2 is 75 cm. When the weight
flow rate is 230 N/s, p; = 165 kPa and p, = 134 kPa.
Neglecting pipe weight, determine the total force that the
flanges must withstand for this flow.

P3.42

®

P3.43

*P3.44 When a uniform stream flows past an immersed thick

cylinder, a broad low-velocity wake is created down-

stream, idealized as a V shape in Fig. P3.44. Pressures
p1 and p, are approximately equal. If the flow is two-
dimensional and incompressible, with width b into the
paper, derive a formula for the drag force F on the cylinder.
Rewrite your result in the form of a dimensionless drag
coeffiient based on body length Cp, = F/(pU?bL).

U

b
1
)

2L

P3.45

P3.46

P3.47

®

P3.44

O S -

A 12-cm-diameter pipe, containing water flowing at
200 N/s, is capped by an orifice plate, as in Fig. P3.45.
The exit jet is 25 mm in diameter. The pressure in the
pipe at section 1 is 800 kPa (gage). Calculate the force
F required to hold the orifice plate.

200 N/s

e

P3.45

When a jet strikes an inclined fixed plate, as in
Fig. P3.46, it breaks into two jets at 2 and 3 of equal
velocity V = Vi, but unequal fluxes aQ at 2 and
(1 — a)Q at section 3, « being a fraction. The reason is
that for frictionless flow the fluid can exert no tangen-
tial force F, on the plate. The condition F, = 0 enables
us to solve for «. Perform this analysis, and find « as a
function of the plate angle §. Why doesn’t the answer
depend on the properties of the jet?

A liquid jet of velocity V; and diameter D; strikes a fixed
hollow cone, as in Fig. P3.47, and deflects back as a con-
ical sheet at the same velocity. Find the cone angle 6 for
which the restraining force F' = %pA,ij



/

P3.48

P3.49

P3.46 Qv " (3)
Conical sheet
Jet i
T "
—
P3.47

The small boat in Fig. P3.48 is driven at a steady speed V,
by a jet of compressed air issuing from a 3-cm-diameter
hole at V, = 343 m/s. Jet exit conditions are p, = 1 atm
and 7, = 30°C. Air drag is negligible, and the hull drag
is kV3, where k = 19 N - s?/m>. Estimate the boat speed
Vi in m/s.

D,=3 cm | Compressed
air

Hull drag kVy?
P3.48

The horizontal nozzle in Fig. P3.49 has D, = 12 in and
D, = 6 in, with inlet pressure p, = 38 Ibf/in“absolute and
V, = 56 ft/s. For water at 20°C, compute the horizontal
force provided by the flange bolts to hold the nozzle fixed.

P3.50

P3.51
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p,= 15 Ibf/in? abs
] =]

Open
jet
Water

®

The jet engine on a test stand in Fig. P3.50 admits air at
20°C and 1 atm at section 1, where A; = 0.5 m” and V, =
250 m/s. The fuel-to-air ratio is 1:30. The air leaves sec-
tion 2 at atmospheric pressure and higher temperature,
where V, =900 m/s and A, = 0.4 m>. Compute the hor-
izontal test stand reaction R, needed to hold this engine
fixed.

P3.49

M fyel

—

|
| .
| Combustion |
| |
|

6 chamber
l\{

—

P3.50 Ry

&

A liquid jet of velocity V; and area A; strikes a single 180°
bucket on a turbine wheel rotating at angular velocity (),
as in Fig. P3.51. Derive an expression for the power P
delivered to this wheel at this instant as a function of the
system parameters. At what angular velocity is the maxi-
mum power delivered? How would your analysis differ if
there were many, many buckets on the wheel, so that the
jet was continually striking at least one bucket?

Bucket

Wheel, radius R

P3.51

P3.52 The vertical gate in a water channel is partially open, as

in Fig. P3.52. Assuming no change in water level and a
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hydrostatic pressure distribution, derive an expression at 20°C. If V; =5 m/s and the manometer reading is
for the streamwise force F, on one-half of the gate as a h = 58 cm, estimate the total force resisted by the
function of (p, h, w, 6, V). Apply your result to the case flange bolts.

of water at 20°C, V, = 0.8 m/s, h =2 m, w = 1.5 m, and

0 = 50°. @ .

0 —  Water

®

—» Py =p, =101 kPa

-

Mercury

P3.54

Top view

P3.55 In Fig. P3.55 the jet strikes a vane that moves to the right
at constant velocity V. on a frictionless cart. Compute
(a) the force F, required to restrain the cart and (b) the
power P delivered to the cart. Also find the cart velocity
for which (c) the force F, is a maximum and (d) the

h power P is a maximum.

i<

Side view P Vi Ay
P3.52 D

P3.53 Consider incompressible flow in the entrance of a circular
tube, as in Fig. P3.53. The inlet flow is uniform, u; = U,
The flow at section 2 is developed pipe flow. Find the wall
drag force F as a function of (py, p, p, Uy, R) if the flow P3.55
at section 2 is

P3.56 Water at 20°C flws steadily through the box in

2
(a) Laminar: u, = Mmax(l _ %) Fig. P3.56, entering station (1) at 2 m/s. Calculate the
R (a) horizontal and (b) vertical forces required to hold the
A\ box stationary against the flow momentum.
(b) Turbulent: u, = u,,, <1 - *)
R D;=5cm /
r=R 2
Q 65°
r >
Uoi,%x — D,=3cm
> ~~— \ y
~— X
P3.53 Friction drag on fluid P3.56

P3.54 For the pipe-flow-reducing section of Fig. P3.54, P3.57 Water flows through the duct in Fig. P3.57, which is 50 cm
D, = 8 cm, D, =5 cm, and p, = 1 atm. All fluids are wide and 1 m deep into the paper. Gate BC completely



1.2 m/s
— 50cm

P3.58

P3.59

closes the duct when 8 = 90°. Assuming one-dimensional
flow, for what angle 8 will the force of the exit jet on the
plate be 3 kN?

Hinge B '

—~—— F'=3kN

P3.57

The water tank in Fig. P3.58 stands on a frictionless cart
and feeds a jet of diameter 4 cm and velocity 8 m/s, which
is deficted 60° by a vane. Compute the tension in the
supporting cable.

8 m/s

/g

Dy=4cm
,— IJ
Cable
¢

©® ()

P3.58

When a pipe flow suddenly expands from A; to A,, as in
Fig. P3.59, low-speed, low-friction eddies appear in the cor-
ners and the flow gradually expands to A, downstream.
Using the suggested control volume for incompressible

Control

Pressure = p,
volume

P2, Vo, Ay

P Vi A

P3.59

P3.60

P3.61

P3.62

Problems 205

steady flow and assuming that p = p; on the corner annu-
lar ring as shown, show that the downstream pressure is

given by
= + pl? A (1 _ ﬁ)
P> = P17 pPVi A, A,

Neglect wall friction.

Water at 20°C fiws through the elbow in Fig. P3.60 and
exits to the atmosphere. The pipe diameter is D; = 10 cm,
while D, = 3 cm. At a weight flow rate of 150 N/s, the
pressure p; = 2.3 atm (gage). Neglecting the weight of
water and elbow, estimate the force on the flange bolts at
section 1.

5
5%

A 20°C water jet strikes a vane mounted on a tank with
frictionless wheels, as in Fig. P3.61. The jet turns
and falls into the tank without spilling out. If 6 = 30°,
evaluate the horizontal force F required to hold the tank
stationary.

P3.60

V; =50 fils

P3.61

Water at 20°C exits to the standard sea-level atmosphere
through the split nozzle in Fig. P3.62. Duct areas are
A, =0.02 m? and A, = A; = 0.008 m>. If p, = 135 kPa
(absolute) and the flow rate is 0, = Q3 = 275 m>/h, com-
pute the force on the flange bolts at section 1.
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P3.63

P3.64

)
30°

30°
é) \

#
P3.62

A steady two-dimensional water jet, 4 cm thick with a
weight flow rate of 1960 N/s, strikes an angled barrier as
in Fig. P3.30. Pressure and water velocity are constant
everywhere. Thirty percent of the jet passes through the
slot. The rest splits symmetrically along the barrier. Cal-
culate the horizontal force F' needed to hold the barrier
per unit thickness into the paper.

4 cm 5

N

1960 N/s
e —30%

P3.63

The 6-cm-diameter 20°C water jet in Fig. P3.64 strikes a
plate containing a hole of 4-cm diameter. Part of the jet
passes through the hole, and part is deflected. Determine
the horizontal force required to hold the plate.

Plate

D, =6cm

25 m/s

P3.64

P3.65

P3.66

P3.67

The box in Fig. P3.65 has three 0.5-in holes on the right
side. The volume fiws of 20°C water shown are steady,
but the details of the interior are not known. Compute the
force, if any, that this water flow causes on the box.

0.1 /s

0.2 /s

0.1 /s

P3.65

The tank in Fig. P3.66 weighs 500 N empty and contains
600 L of water at 20°C. Pipes 1 and 2 have equal diam-
eters of 6 cm and equal steady volume flows of 300 m*/h.
What should the scale reading W be in N?

S8
B

w?

ava

/‘

P3.66

Gravel is dumped from a hopper, at a rate of 650 N/s,
onto a moving belt, as in Fig. P3.67. The gravel then
passes off the end of the belt. The drive wheels are 80 cm
in diameter and rotate clockwise at 150 r/min. Neglecting
system friction and air drag, estimate the power required
to drive this belt.

P3.67



P3.68 The rocket in Fig. P3.68 has a supersonic exhaust, and the *P3.72

P3.69

P3.70

P3.71

exit pressure p, is not necessarily equal to p,. Show that
the force F' required to hold this rocket on the test stand
is F=p,AV?> + AJp, — po). Is this force F what we
term the thrust of the rocket?

Fuel
P * P
—> —_— , —» P, A
" \
Oxidizer
P3.68

A uniform rectangular plate, 40 cm long and 30 cm deep
into the paper, hangs in air from a hinge at its top (the
30-cm side). It is struck in its center by a horizontal 3-cm-
diameter jet of water moving at 8 m/s. If the gate has a
mass of 16 kg, estimate the angle at which the plate will
hang from the vertical.

The dredger in Fig. P3.70 is loading sand (SG = 2.6) onto
a barge. The sand leaves the dredger pipe at 4 ft/s with a
weight flux of 850 1bf/s. Estimate the tension on the moor-
ing line caused by this loading process.

§ V\é o

1%

AvA

P3.70

Suppose that a deflector is deployed at the exit of the
jet engine of Prob. P3.50, as shown in Fig. P3.71. What
will the reaction R, on the test stand be now? Is this
reaction sufficient to serve as a braking force during air-
plane landing?

P3.71

P3.73

P3.74

Problems 207

When immersed in a uniform stream, a thick elliptical
cylinder creates a broad downstream wake, as idealized
in Fig. P3.72. The pressure at the upstream and
downstream

I

_

i

b

-

Width b into paper

P3.72

sections are approximately equal, and the fluid is water at
20°C. If Uy =4 m/s and L = 80 cm, estimate the drag
force on the cylinder per unit width into the paper. Also
compute the dimensionless drag coefficient Cp =
2F/(pU3bL).

A pump in a tank of water at 20°C directs a jet at 45 ft/s
and 200 gal/min against a vane, as shown in Fig. P3.73.
Compute the force F' to hold the cart stationary if the jet
follows (a) path A or (b) path B. The tank holds 550 gal
of water at this instant.

120° / / @\ K.

T

Water at 20°C flows down through a vertical, 6-cm-
diameter tube at 300 gal/min, as in Fig. P3.74. The flow
then turns horizontally and exits through a 90° radial
duct segment 1 cm thick, as shown. If the radial outflow
is uniform and steady, estimate the forces (F,, F, F.)
required to support this system against fluid momentum
changes.

Water

P3.73
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— l <~——6cm y

Vertical Horizontal
plane z plane . X
L x

l /R:lSCm

1 CmT ‘ Radial outflow

P3.74

*P3.75 A jet of liquid of density p and area A strikes a block and
splits into two jets, as in Fig. P3.75. Assume the same
velocity V for all three jets. The upper jet exits at an
angle 6 and area aA. The lower jet is turned 90° down-
ward. Neglecting fluid weight, (a) derive a formula for
the forces (F,, F,) required to support the block against
fluid momentum changes. (b) Show that F, = 0 only if
a = 0.5. (c¢) Find the values of a and 6 for which both
F, and F, are zero.

P3.75

P3.76 A two-dimensional sheet of water, 10 cm thick and mov-
ing at 7 m/s, strikes a fied wall inclined at 20° with
respect to the jet direction. Assuming frictionless flow,
find (a) the normal force on the wall per meter of depth,
and find the widths of the sheet deflected (b) upstream and
(c) downstream along the wall.

P3.77 Water at 20°C flws steadily through a reducing pipe bend,
as in Fig. P3.77. Known conditions are p; = 350 kPa,
D, =25cm, V, =2.2m/s, p, = 120 kPa, and D, = 8 cm.
Neglecting bend and water weight, estimate the total force
that must be resisted by the flange bolts.

P3.78 A fluid jet of diameter D; enters a cascade of moving
blades at absolute velocity V; and angle 3, and it leaves
at absolute velocity V, and angle 3,, as in Fig. P3.78.
The blades move at velocity u. Derive a formula for the
power P delivered to the blades as a function of these
parameters.

P3.79

P3.80

p, =100 kPa

P3.77 @

Air jet '/ Blades :

P3.78 I I

Air at 20°C and 1 atm enters the bottom of an 85° con-
ical flowmeter duct at a mass flow of 0.3 kg/s, as shown
in Fig. P3.79. It is able to support a centered conical
body by steady annular flow around the cone, as shown.
The air velocity at the upper edge of the body equals the
entering velocity. Estimate the weight of the body, in
newtons.

P3.79

A river of width b and depth h; passes over a submerged
obstacle, or “drowned weir,” in Fig. P3.80, emerging at a
new flow condition (V,, h,). Neglect atmospheric pressure,
and assume that the water pressure is hydrostatic at both
sections 1 and 2. Derive an expression for the force exerted



P3.81

EES

*P3.82

by the river on the obstacle in terms of Vi, hy, h,, b,
p, and g. Neglect water friction on the river bottom.

Vy hy Width b into paper
—
V,, hy
—
P3.80

Torricelli’s idealization of efflux from a hole in the side
of a tank is V = V2 gh, as shown in Fig. P3.81. The
cylindrical tank weighs 150 N when empty and contains
water at 20°C. The tank bottom is on very smooth ice
(static friction coefficient { = 0.01). The hole diameter is
9 cm. For what water depth 4 will the tank just begin to
move to the right?

A
Water
h 1 m

Static
friction

P3.81

The model car in Fig. P3.82 weighs 17 N and is to be
accelerated from rest by a 1-cm-diameter water jet mov-
ing at 75 m/s. Neglecting air drag and wheel friction,
estimate the velocity of the car after it has moved for-
ward 1 m.

3

P3.83

P3.82

Gasoline at 20°C is fiwing at V; =12 m/s in a 5-cm-
diameter pipe when it encounters a 1m length of uniform
radial wall suction. At the end of this suction region, the

P3.84

P3.85

P3.86

P3.87
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average fluid velocity has dropped to V, = 10 m/s. If p; =
120 kPa, estimate p, if the wall friction losses are neglected.
Air at 20°C and 1 atm flws in a 25-cm-diameter duct
at 15 m/s, as in Fig. P3.84. The exit is choked by a 90°
cone, as shown. Estimate the force of the airflow on the
cone.

1cm

25 cm 90° 40 cm

P3.84

The thin-plate orifice in Fig. P3.85 causes a large pres-
sure drop. For 20°C water fiw at 500 gal/min, with pipe
D =10 cm and orifice d = 6 cm, p; — p, = 145 kPa. If
the wall friction is negligible, estimate the force of the
water on the orifice plate.

£

l

S)

® ®

For the water jet pump of Prob. P3.36, add the following
data: p, = p, = 25 Ibf/in?, and the distance between sec-
tions 1 and 3 is 80 in. If the average wall shear stress
between sections 1 and 3 is 7 Ibf/ft?, estimate the pres-
sure p;. Why is it higher than p,?

A vane turns a water jet through an angle «, as shown in
Fig. P3.87. Neglect friction on the vane walls. (a) What
is the angle a for the support force to be in pure
compression? (b) Calculate this compression force if
the water velocity is 22 ft/s and the jet cross section is
4 in’

P3.85
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P3.87

The boat in Fig. P3.88 is jet-propelled by a pump that
develops a volume flow rate Q and ejects water out the
stern at velocity V;. If the boat drag force is F = kVZ,
where k is a constant, develop a formula for the steady
forward speed V of the boat.

V -—

A

P3.89

P3.90

{[[Pump|[T

_2
/\_//

P3.88

Consider Fig. P3.36 as a general problem for analysis of
a mixing ejector pump. If all conditions (p, p, V) are
known at sections 1 and 2 and if the wall friction is neg-
ligible, derive formulas for estimating (a) V5 and (b) ps.
As shown in Fig. P3.90, a liquid column of height % is
confined in a vertical tube of cross-sectional area A by a
stopper. At ¢ = 0 the stopper is suddenly removed, expos-
ing the bottom of the liquid to atmospheric pressure.

lj<1

V(1)

C— ]

P3.90 Stopper

P3.91

P3.93

P3.94

Using a control volume analysis of mass and vertical
momentum, derive the differential equation for the down-
ward motion V(7) of the liquid. Assume one-dimensional,
incompressible, frictionless flow.

Extend Prob. P3.90 to include a linear (laminar) average
wall shear stress resistance of the form 7= ¢V, where ¢
is a constant. Find the differential equation for dV/dt and
then solve for V(¢), assuming for simplicity that the wall
area remains constant.

A more involved version of Prob. P3.90 is the elbow-
shaped tube in Fig. P3.92, with constant cross-sectional
area A and diameter D < h, L. Assume incompressible
flow, neglect friction, and derive a differential equation
for dV/dt when the stopper is opened. Hint: Combine two
control volumes, one for each leg of the tube.

Py

Vi

P3.92

According to Torricelli’s theorem, the velocity of a fluid
draining from a hole in a tank is V = (2gh)""?, where h is
the depth of water above the hole, as in Fig. P3.93. Let
the hole have area A, and the cylindrical tank have cross-
section area A, >> A,. Derive a formula for the time to
drain the tank completely from an initial depth #,.

T

‘Water h

W .

A water jet 3 in in diameter strikes a concrete (SG = 2.3)
slab which rests freely on a level floor. If the slab is 1 ft
wide into the paper, calculate the jet velocity which will
just begin to tip the slab over.

AvA

P3.93



P3.95

P3.96

-V
36 in /
‘ 20 in.
| |
|
E—— : | <—8in
1 |

P3.94

A tall water tank discharges through a well-rounded ori-
fice, as in Fig. P3.95. Use the Torricelli formula of Prob.
P3.81 to estimate the exit velocity. (a) If, at this instant,
the force F required to hold the plate is 40 N, what is the
depth h? (b) If the tank surface is dropping at the rate of
2.5 cm/s, what is the tank diameter D?

ava
h
I
- o\ u
‘d=4cm I—

P3.95

-~ D———

Extend Prob. P3.90 to the case of the liquid motion in a
frictionless U-tube whose liquid column is displaced a
distance Z upward and then released, as in Fig. P3.96.

***** Equilibrium position

Liquid—column length

I 1 L=hy+hy+hy
| .
\4

Y > = /1
L hz”OJ

P3.96

*P3.97

*P3.98

P3.99
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Neglect the short horizontal leg, and combine control vol-
ume analyses for the left and right legs to derive a single
differential equation for V(#) of the liquid column.
Extend Prob. P3.96 to include a linear (laminar) average
wall shear stress resistance of the form 7= 8uV/D,
where u is the fluid viscosity. Find the differential equa-
tion for dV/dt and then solve for V(#), assuming an ini-
tial displacement z =z5, V=0 at t = 0. The result
should be a damped oscillation tending toward z = 0.
As an extension of Example 3.10, let the plate and its cart
(see Fig. 3.10a) be unrestrained horizontally, with fric-
tionless wheels. Derive (a) the equation of motion for cart
velocity V.(¢) and (b) a formula for the time required for
the cart to accelerate from rest to 90 percent of the jet
velocity (assuming the jet continues to strike the plate
horizontally). (¢) Compute numerical values for part
(b) using the conditions of Example 3.10 and a cart mass
of 2 kg.
Let the rocket of Fig. E3.12 start at z = 0, with constant
exit velocity and exit mass flow, and rise vertically with
zero drag. (a) Show that, as long as fuel burning contin-
ues, the vertical height S(¢) reached is given by

S = VeM, + 1], wh =1 it

== [{Ing — ¢ ], where ¢ = M,

(b) Apply this to the case V, = 1500 m/s and M, =
1000 kg to find the height reached after a burn of 30 sec-
onds, when the final rocket mass is 400 kg.

P3.100 Suppose that the solid-propellant rocket of Prob. P3.35 is

built into a missile of diameter 70 cm and length 4 m. The
system weighs 1800 N, which includes 700 N of propel-
lant. Neglect air drag. If the missile is fired vertically from
rest at sea level, estimate (a) its velocity and height at fuel
burnout and (b) the maximum height it will attain.

P3.101 Water at 20°C flows steadily through the tank in Fig.

P3.101. Known conditions are D; = 8 cm, V; = 6 m/s,
and D, = 4 cm. A rightward force F = 70 N is required
to keep the tank fixed. (a) What is the velocity leaving
section 272 (b) If the tank cross section is 1.2 m?, how fast
is the water surface A(?) rising or falling?

|9

-

h(t)

9
—

P3.101

P3.102 As can often be seen in a kitchen sink when the faucet

is running, a high-speed channel flow (V,, h;) may
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“jump” to a low-speed, low-energy condition (V,, h,) as
in Fig. P3.102. The pressure at sections 1 and 2 is
approximately hydrostatic, and wall friction is negligible.
Use the continuity and momentum relations to find 4,
and V, in terms of (h;, V)).

Hydraulic 'y
jump T—
V,<V
21 hy>h
Vi
hl ——
P3.102

*P3.103 Suppose that the solid-propellant rocket of Prob. P3.35

is mounted on a 1000-kg car to propel it up a long slope
of 15° The rocket motor weighs 900 N, which includes
500 N of propellant. If the car starts from rest when
the rocket is fired, and if air drag and wheel friction are
neglected, estimate the maximum distance that the car
will travel up the hill.

P3.104 A rocket is attached to a rigid horizontal rod hinged at the
origin as in Fig. P3.104. Its initial mass is My, and its exit
properties are m and V, relative to the rocket. Set up the
differential equation for rocket motion, and solve for the
angular velocity w(?) of the rod. Neglect gravity, air drag,
and the rod mass.

X
R
y o
~—r
®, ®
P3.104 7 Voo Pe = Pa

P3.105 Extend Prob. P3.104 to the case where the rocket has a lin-

ear air drag force F' = ¢V, where c is a constant. Assuming
no burnout, solve for w(f) and find the terminal angular
velocity—that is, the final motion when the angular accel-
eration is zero. Apply to the case My =6 kg, R =3 m,
m = 0.05 kg/s, V, = 1100 m/s, and ¢ = 0.075 N - s/m to
find the angular velocity after 12 s of burning.

P3.106 Actual air flow past a parachute creates a variable distri-

bution of velocities and directions. Let us model this as a
circular air jet, of diameter half the parachute diameter,
which is turned completely around by the parachute, as in
Fig. P3.106. (a) Find the force F required to support the
chute. (b) Express this force as a dimensionless drag
coeffiient , Cp = F/[(‘/z)sz(Tr/4)D2] and compare with
Table 7.3.

R
D

D2

P3.106

P3.107 The cart in Fig. P3.107 moves at constant velocity

Vo = 12 m/s and takes on water with a scoop 80 cm
wide that dips 7 = 2.5 cm into a pond. Neglect air drag
and wheel friction. Estimate the force required to keep
the cart moving.

=0

P3.107

*P3.108 A rocket sled of mass M is to be decelerated by a scoop,

as in Fig. P3.108, which has width b into the paper
and dips into the water a depth A, creating an upward jet
at 60°. The rocket thrust is 7 to the left. Let the initial
velocity be V(, and neglect air drag and wheel friction.
Find an expression for V(¢) of the sled for (@) T = 0 and
(b) finite T # 0.

P3.109 For the boundary layer flow in Fig. 3.10, let the exit

velocity profile, at x = L, simulate turbulent flow,
u = Uo(y/ﬁ)m. (a) Find a relation between h and 8.
(b) Find an expression for the drag force F' on the plate
between 0 and L.



60°

I

P3.108

The Bernoulli Equation

P3.110 Repeat Prob. P3.49 by assuming that p; is unknown and
using Bernoulli’s equation with no losses. Compute the
new bolt force for this assumption. What is the head loss
between 1 and 2 for the data of Prob. P3.49?

P3.111 Extend the siphon analysis of Example 3.22 as follows.
Let p; = 1 atm, and let the fluid be hot water at 60°C. Let
71, 2, and z4 be the same, with z; unknown. Find the value
of zz for which the water might begin to vaporize.

P3.112 A jet of alcohol strikes the vertical plate in Fig. P3.112.
A force F =~ 425 N is required to hold the plate station-
ary. Assuming there are no losses in the nozzle, estimate
(a) the mass flow rate of alcohol and (b) the absolute pres-
sure at section 1.

Alcohol, SG =0.79
p. =101 kPa
I a
—-—-——I>V1—-—-——>-V2—-—- e [
|
| |
! D,=2cm
|
| l
Dy=5cm

P3.112

P3.113 An airplane is flying at 300 mi/h at 4000 m standard
altitude. As is typical, the air velocity relative to the upper
surface of the wing, near its maximum thickness, is
26 percent higher than the plane’s velocity. Using
Bernoulli’s equation, calculate the absolute pressure at
this point on the wing. Neglect elevation changes and
compressibility.
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P3.114 Water flows through a circular nozzle, exits into the air as
a jet, and strikes a plate, as shown in Fig. P3.114. The
force required to hold the plate steady is 70 N. Assuming
steady, frictionless, one-dimensional flow, estimate (a) the
velocities at sections (1) and (2) and (b) the mercury
manometer reading h.

D;=10cm
D\ 2o
— — |— [
Water at 20°C
Air

P3.114 He

P3.115 A free liquid jet, as in Fig. P3.115, has constant ambient

% pressure and small losses; hence from Bernoulli’s equation
z + V2/(2g) is constant along the jet. For the fire nozzle in
the figure, what are (a) the minimum and (b) the maximum
values of 6 for which the water jet will clear the corner of
the building? For which case will the jet velocity be higher
when it strikes the roof of the building?

%X*J
50 ft
V, = 100 ft/s
[
%%40 ft —
P3.115

P3.116 For the container of Fig. P3.116 use Bernoulli’s equa-
tion to derive a formula for the distance X where the

ava

Free
H jet
_ e Je
h

P3.116 — X
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free jet leaving horizontally will strike the floor, as a  P3.120 The manometer fluid in Fig. P3.120 is mercury. Estimate

function of & and H. For what ratio #/H will X be max- the volume flow in the tube if the flowing fluid is
imum? Sketch the three trajectories for /H = 0.25, 0.5, (a) gasoline and (b) nitrogen, at 20°C and 1 atm.
and 0.75.

P3.117 Water at 20°C, in the pressurized tank of Fig. P3.117,
flows out and creates a vertical jet as shown. Assuming

steady frictionless flow, determine the height H to which ; —
3in W —

the jet rises.

Air lin
75 kPa (gage)
H? N
P3.120

1 P3.121 In Fig. P3.121 the flowing fluid is CO, at 20°C. Neglect
T (il - losses. If p; = 170 kPa and the manometer fluid is
| Meriam red oil (SG = 0.827), estimate (a) p, and (b) the
P3.117 gas flow rate in m>/h.

sk

P3.118 Bernoulli’s 1738 treatise Hydrodynamica contains many
excellent sketches of flow patterns related to his friction-
less relation. One, however, redrawn here as Fig. P3.118, Dy =10cm
seems physically misleading. Can you explain what might
be wrong with the figure?

D, =6cm

< T

8cm

i}

P3.121

Jet P3.122 The cylindrical water tank in Fig. P3.122 is being filled
at a volume flow Q; = 1.0 gal/min, while the water also

— Jet

P3.118

P3.119 A long fixed tube with a rounded nose, aligned with an
oncoming flow, can be used to measure velocity. Mea-

Diameter
surements are made of the pressure at (1) the front nose ‘Ql D =20 cm
and (2) a hole in the side of the tube further along, where L
the pressure nearly equals stream pressure. N

(a) Make a sketch of this device and show how the veloc-
ity is calculated. (b) For a particular sea-level air flow, the || -
difference between nose pressure and side pressure is

1.5 Ibf/in®. What is the air velocity, in mi/h? P3.122 ‘VZ




drains from a bottom hole of diameter d = 6 mm. At time
t = 0, h = 0. Find and plot the variation h(f) and the
eventual maximum water depth h,,.. Assume that
Bernoulli’s steady-flow equation is valid.

P3.123 The air-cushion vehicle in Fig. P3.123 brings in sea-
level standard air through a fan and discharges it at high
velocity through an annular skirt of 3-cm clearance. If
the vehicle weighs 50 kN, estimate (a) the required
airflow rate and (b) the fan power in kW.

W=50kN

P3.123

P3.124 A necked-down section in a pipe flow, called a venturi,
develops a low throat pressure that can aspirate fluid
upward from a reservoir, as in Fig. P3.124. Using
Bernoulli’s equation with no losses, derive an expression
for the velocity V; that is just sufficient to bring reservoir
fluid into the throat.

Vypy=p,

Water

P3.124

P3.125 Suppose you are designing an air hockey table. The table
is 3.0 X 6.0 ft in area, with c-in-diameter holes spaced
every inch in a rectangular grid pattern (2592 holes total).
The required jet speed from each hole is estimated to be
50 ft/s. Your job is to select an appropriate blower that
will meet the requirements. Estimate the volumetric flow
rate (in ft’/min) and pressure rise (in 1b/in?) required of
the blower. Hint: Assume that the air is stagnant in the
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large volume of the manifold under the table surface, and
neglect any frictional losses.

P3.126 The liquid in Fig. P3.126 is kerosene at 20°C. Estimate
the flow rate from the tank for (a) no losses and (b) pipe
losses hy =~ 4.5V?/(2g).

Air:
p = 20 Ibf/in2 abs

=

5 ft

p. = 14.7 1bf/in2 abs
a

D=1in

BN

-t

P3.127 In Fig. P3.127 the open jet of water at 20°C exits a nozzle
into sea-level air and strikes a stagnation tube as shown.

—_—

P3.126

. !
\ Water : fm If
12cm (1) > : > --- Open jet
|
| 1

Sea-level air

P3.127

If the pressure at the centerline at section 1 is 110 kPa, and
losses are neglected, estimate (a) the mass flow in kg/s and
(b) the height H of the fluid in the stagnation tube.

P3.128 A venturi meter, shown in Fig. P3.128, is a carefully
designed constriction whose pressure difference is a meas-
ure of the flow rate in a pipe. Using Bernoulli’s equation for

P3.128
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steady incompressible flow with no losses, show that the P3.132 Extend the siphon analysis of Example 3.14 to account

flow rate Q is related to the manometer reading /2 by for friction in the tube, as follows. Let the friction head
loss in the tube be correlated as 5.4(Vype)/(2g), which
0= 4 /Zgh(p u ~ P) approximates turbulent flow in a 2-m-long tube. Calculate
V1 — (D,/D,) P the exit velocity in m/s and the volume flow rate in cm?/s,
where p,, is the density of the manometer fluid. and compare to Examl? le 3'14'
S . . P3.133 If losses are neglected in Fig. P3.133, for what water level
P3.129 An open-circuit wind tunnel draws in sea-level standard air ; . o
and accelerates it through a contraction into a 1-m by 1-m h will the flow begin to form vapor cavities at the throat
?
test section. A differential transducer mounted in the test of the nozzle?
section wall measures a pressure difference of 45 mm of AV
water between the inside and outside. Estimate (a) the test —— p, =100 kPa

section velocity in mi/h and (b) the absolute pressure on the
front nose of a small model mounted in the test section.
P3.130 In Fig. P3.130 the flid is gasoline at 20°C at a weight h
flux of 120 N/s. Assuming no losses, estimate the gage
pressure at section 1.

Dy=5cm

OPen
jet

Water at 30°C

P3.133

*P3.134 For the 40°C water fiw in Fig. P3.134, estimate the vol-
ume flow through the pipe, assuming no losses; then

g explain what is wrong with this seemingly innocent
em question. If the actual flow rate is Q = 40 m>/h, compute
P3.130 (a) the head loss in ft and (b) the constriction diameter D
P3.131 In Fig. P3.131 both flids are at 20°C. If V; = 1.7 ft/s and that causes cavitation, assuming that the throat divides the
losses are neglected, what should the manometer reading head loss equally and that changing the constriction

h ft be? causes no additional losses.

1 N
1 in —> 47@ -
25 m
vV
10 ft =
3in i 10 m
i @ T — — —l—
8 — Water S —— T T
D
T ‘ P3.134 5cm
2 ft . .
P3.135 The 35°C water flw of Fig. P3.135 discharges to sea-
h level standard atmosphere. Neglecting losses, for what
nozzle diameter D will cavitation begin to occur? To
avoid cavitation, should you increase or decrease D from
P3.131 Mercury this critical value?
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P3.139 In the spillway flow of Fig. P3.139, the flow is assumed
uniform and hydrostatic at sections 1 and 2. If losses are
lin  3in D neglected, compute (a) V, and (b) the force per unit width
6 ft ‘ l \ of the water on the spillway.

. [ :

P3.136 Air, assumed frictionless, flows through a tube, exiting to Vi — 0.7:m
sea-level atmosphere. Diameters at 1 and 3 are 5 cm, l
while D, = 3 cm. What mass flow of air is required to —V;
suck water up 10 cm into section 2 of Fig. P3.136?
@ ©, ®

P3.139

P3.140 For the water channel flow of Fig. P3.140, h; = 1.5 m,
@ H=4m and V, =3 mis. Neglecting losses and assum-

ing uniform flow at sections 1 and 2, find the downstream

_;‘ depth h,, and show that two realistic solutions are possible.

10 cm
hy
Water —=V
P3.136

P3.137 In Fig. P3.137 the piston drives water at 20°C. Neglect-

II[
ing losses, estimate the exit velocity V, ft/s. If D, is
of Vz()

further constricted, what is the maximum possible value

hy
P3.140 T
P3.141 For the water channel flow of Fig. P3.141, h; = 0.45 ft,
@ H=22ft and V, = 16 fi/s. Neglecting losses and assum-
D;=8in ing uniform flow at sections 1 and 2, find the downstream
D,=4in depth h,; show that rwo realistic solutions are possible.
hy
F=101bf —=¢ Water —_—V, l
Pa
P, — Y
P3.137 n T
P3.138 For the sluice gate flow of Example 3.10, use Bernoulli’s l H
equation, along the surface, to estimate the flow rate Q
as a function of the two water depths. Assume constant
width b.

P3.141 T
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*P3.142 A cylindrical tank of diameter D contains liquid to an ini-

tial height k. At time # = 0 a small stopper of diameter
d is removed from the bottom. Using Bernoulli’s equation
with no losses, derive (a) a differential equation for the
free-surface height A(¢) during draining and () an expres-
sion for the time #, to drain the entire tank.

*P3.143 The large tank of incompressible liquid in Fig. P3.143 is

at rest when, at ¢ = 0, the valve is opened to the atmos-
phere. Assuming s = constant (negligible velocities and
accelerations in the tank), use the unsteady frictionless
Bernoulli equation to derive and solve a differential equa-
tion for V(¢) in the pipe.

:

h = constant

YA

D Valve
—)

| . |

P3.143

P3.144 A 6-cm-diameter free water jet, in sea-level air at 101,350

Pa, strikes perpendicular to a flat wall. If the water stag-
nation pressure at the wall is 213,600 Pa, estimate the
force required to support the wall against jet momentum.

P3.145 The incompressible flow form of Bernoulli’s relation,

Eq. (3.54), is accurate only for Mach numbers less than
about 0.3. At higher speeds, variable density must
be accounted for. The most common assumption for com-
pressible fluids is isentropic fiw of an ideal gas, or p =
Cpk, where k = ¢, /c,. Substitute this relation into Eq. (3.52),
integrate, and eliminate the constant C. Compare your com-
pressible result with Eq. (3.54) and comment.

P3.146 The pump in Fig. P3.146 draws gasoline at 20°C from a

reservoir. Pumps are in big trouble if the liquid vaporizes
(cavitates) before it enters the pump. (a) Neglecting losses
and assuming a flow rate of 65 gal/min, find the limita-
tions on (x, y, z) for avoiding cavitation. (b) If pipe fric-
tion losses are included, what additional limitations might
be important?

P3.147 For the system of Prob P3.146, let the pump exhaust

gasoline at 65 gal/min to the atmosphere through a 3-cm-
diameter opening, with no cavitation, when x = 3 m,
y = 2.5 m, and z =2 m. If the friction head loss is
Tioss = 3.7(V?12g), where V is the average velocity in the
pipe, estimate the horsepower required to be delivered by
the pump.

T

Patm = 100 kPa

—

YA

D=3cm y

Gasoline,
SG =0.68

—

P3.146

P3.148 By neglecting friction, (a) use the Bernoulli equation

between surfaces 1 and 2 to estimate the volume flow
through the orifice, whose diameter is 3 cm. (b) Why is
the result to part (@) absurd? (¢) Suggest a way to resolve
this paradox and find the true flow rate.

@ —

Pa

®

Water

i - |

P3.148

The angular momentum theorem
P3.149 The horizontal lawn sprinkler in Fig. P3.149 has a water

flow rate of 4.0 gal/min introduced vertically through the
center. Estimate (a) the retarding torque required to keep
the arms from rotating and (b) the rotation rate (r/min) if
there is no retarding torque.

P3.149 l

P3.150 In Prob. P3.60 find the torque caused around flange 1 if

the center point of exit 2 is 1.2 m directly below the flange
center.



P3.151 The wye joint in Fig. P3.151 splits the pipe flow into
equal amounts Q/2, which exit, as shown, a distance R,
from the axis. Neglect gravity and friction. Find an
expression for the torque 7" about the x axis required to
keep the system rotating at angular velocity ().

e
-7 2
T, Q

Ry>> DpipeS

— _o—|- _

- X

<—C>:J—>-<—

\ g
2
P3.151

P3.152 Modity Example 3.19 so that the arm starts from rest and
spins up to its final rotation speed. The moment of iner-
tia of the arm about O is /. Neglecting air drag, find dw/dt
and integrate to determine the angular velocity w(?),
assuming w = 0 at r = 0.

P3.153 The three-arm lawn sprinkler of Fig. P3.153 receives
20°C water through the center at 2.7 m“/h. If collar
friction is negligible, what is the steady rotation rate in
r/min for (a) # = 0° and (b) 6 = 40°?

P3.153

P3.154 Water at 20°C flws at 30 gal/min through the 0.75-in-
diameter double pipe bend of Fig. P3.154. The pressures are
p1 =30 Ibf/in* and p, = 24 Ibf/in>. Compute the torque T
at point B necessary to keep the pipe from rotating.

P3.155 The centrifugal pump of Fig. P3.155 has a flow rate Q
and exits the impeller at an angle 6, relative to the
blades, as shown. The fluid enters axially at section 1.
Assuming incompressible flow at shaft angular velocity
w, derive a formula for the power P required to drive
the impeller.
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P3.154

P3.155

P3.156 A simple turbomachine is constructed from a disk with two
internal ducts that exit tangentially through square holes,
as in Fig. P3.156. Water at 20°C enters normal to the disk
at the center, as shown. The disk must drive, at 250 r/min,
a small device whose retarding torque is 1.5 N - m. What
is the proper mass flow of water, in kg/s?

P3.156
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P3.157 Reverse the flow in Fig. P3.155, so that the system oper-
ates as a radial-inflow furbine. Assuming that the outflow
into section 1 has no tangential velocity, derive an expres-
sion for the power P extracted by the turbine.

P3.158 Revisit the turbine cascade system of Prob. P3.78, and
derive a formula for the power P delivered, using the
angular momentum theorem of Eq. (3.59).

P3.159 A centrifugal pump impeller delivers 4000 gal/min of
water at 20°C with a shaft rotation rate of 1750 r/min.
Neglect losses. If r; = 6in, r, = 14in, by = b, = 1.75 in,
V,1 = 10 ft/s, and V,, = 110 ft/s, compute the absolute
velocities (a) V, and (b) V, and (c) the horsepower
required. (d) Compare with the ideal horsepower
required.

P3.160 The pipe bend of Fig. P3.160 has D; = 27 cm and D, =
13 cm. When water at 20°C flws through the pipe at
4000 gal/min, p; = 194 kPa (gage). Compute the torque
required at point B to hold the bend stationary.

[

()
™ V2: P2=Pa

50 cm o
Ll
-,

P3.160 Vi.py

*P3.161 Extend Prob. P3.46 to the problem of computing the cen-
ter of pressure L of the normal face F,, as in Fig. P3.161.
(At the center of pressure, no moments are required to hold
the plate at rest.) Neglect friction. Express your result in
terms of the sheet thickness /; and the angle 6 between
the plate and the oncoming jet 1.

P3.161

P3.162 The waterwheel in Fig. P3.162 is being driven at
200 r/min by a 150-ft/s jet of water at 20°C. The jet
diameter is 2.5 in. Assuming no losses, what is the horse-
power developed by the wheel? For what speed () r/min
will the horsepower developed be a maximum? Assume
that there are many buckets on the waterwheel.

! 150 ft/s

/(

75°

P3.162

P3.163 A rotating dishwasher arm delivers at 60°C to six nozzles,
as in Fig. P3.163. The total flow rate is 3.0 gal/min. Each
nozzle has a diameter of % in. If the nozzle flows are
equal and friction is neglected, estimate the steady rota-
tion rate of the arm, in r/min.

77777 [5 inpeS inpe-6 in—> 6 5
LD S < b
o

g

P3.163

*P3.164 A liquid of density p iws through a 90° bend as shown

in Fig. P3.164 and issues vertically from a uniformly
porous section of length L. Neglecting pipe and liquid
weight, derive an expression for the torque M at point 0
required to hold the pipe stationary.



Closed
valve

o
P3.164

The energy equation

P3.165 There is a steady isothermal éiw of water at 20°C through
the device in Fig. P3.165. Heat-transfer, gravity, and tem-
perature effects are negligible. Known data are D; = 9 cm,
0, = 220 m*/h, p; = 150 kPa, D, = 7 cm, O, = 100 m*/h,
p>» = 225 kPa, D3 = 4 cm, and p3 = 265 kPa. Compute the
rate of shaft work done for this device and its direction.

o

i Isothermal
steady
= flow

P3.165

P3.166 A power plant on a river, as in Fig. P3.166, must elimi-
nate 55 MW of waste heat to the river. The river
conditions upstream are Q; = 2.5 m’/s and T; = 18°C.
The river is 45 m wide and 2.7 m deep. If heat losses to
the atmosphere and ground are negligible, estimate the
downstream river conditions (Qg, Ty).

P3.167 For the conditions of Prob. P3.166, if the power plant is
to heat the nearby river water by no more than 12°C, what
should be the minimum flow rate Q, in m?/s, through the
plant heat exchanger? How will the value of Q affect the
downstream conditions (Qo, T)?

P3.168 Multnomah Falls in the Columbia River Gorge has a sheer
drop of 543 ft. Using the steady flow energy equation,
estimate the water temperature change in °F caused by
this drop.
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=
P3.166 Q0 To

P3.169 When the pump in Fig. P3.169 draws 220 m*/h of water at
20°C from the reservoir, the total friction head loss is 5 m.

The flow discharges through a nozzle to the atmosphere.
Estimate the pump power in kW delivered to the water.

L] ° L]
D=12cm (o O o D,=5cm
L] L]
T e 1 ==V,
2m Pump
v o4
6 m
Water
P3.169

P3.170 A steam turbine operates steadily under the following con-
ditions. At the inlet, p = 2.5 MPa, T = 450°C, and V =
40 m/s. At the outlet, p = 22 kPa, T = 70°C, and V =
225 m/s. (a) If we neglect elevation changes and heat
transfer, how much work is delivered to the turbine
blades, in kJ/kg? (b) If the mass flow is 10 kg/s, how
much total power is delivered? (c¢) Is the steam wet as it
leaves the exit?

P3.171 Consider a turbine extracting energy from a penstock in a
dam, as in Fig. P3.171. For turbulent pipe flow (Chap. 6),
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the friction head loss is approximately h, = CQ?, where
the constant C depends on penstock dimensions and the
properties of water. Show that, for a given penstock geom-
etry and variable river flow Q, the maximum turbine power
possible in this case is Pp,.x = 2pgHQ/3 and occurs when

the flow rate is Q = VH/(3C).

A A e —
Penstock ‘
0— H
\ v
Turbine |——
L=
P3.171

P3.172 The long pipe in Fig. P3.172 is Hed with water at 20°C.

When valve A is closed, p; — p, = 75 kPa. When the
valve is open and water flows at 500 m>h, p;, — p, =
160 kPa. What is the friction head loss between 1 and 2,
in m, for the flowing condition?

Constant-
diameter

pipe

P3.172

P3.173 A 36-in-diameter pipeline carries oil (SG = 0.89) at

1 million barrels per day (bbl/day) (1 bbl = 42 U.S. gal).
The friction head loss is 13 ft/1000 ft of pipe. It is planned
to place pumping stations every 10 mi along the pipe.
Estimate the horsepower that must be delivered to the oil
by each pump.

P3.174 The pump-turbine system in Fig. P3.174 draws water

from the upper reservoir in the daytime to produce power
for a city. At night, it pumps water from lower to upper
reservoirs to restore the situation. For a design flow rate
of 15,000 gal/min in either direction, the friction head loss
is 17 ft. Estimate the power in kW (a) extracted by the tur-
bine and (b) delivered by the pump.

Water at 20°C

® Z, =150 ft

Pump-
turbine

P3.174

P3.175 Water at 20°C is delivered from one reservoir to another

through a long 8-cm-diameter pipe. The lower reservoir
has a surface elevation z, = 80 m. The friction loss in the
pipe is correlated by the formula Ay =~ 17.5(V*/2g),
where V is the average velocity in the pipe. If the steady
flow rate through the pipe is 500 gallons per minute, esti-
mate the surface elevation of the higher reservoir.

P3.176 A fireboat draws seawater (SG = 1.025) from a

submerged pipe and discharges it through a nozzle, as in
Fig. P3.176. The total head loss is 6.5 ft. If the pump
efficiency is 75 percent, what horsepower motor is
required to drive it?

Pump

D=2in

T —— > 120ft/s

D=6in

P3.176

P3.177 A device for measuring liquid viscosity is shown in

Fig. P3.177. With the parameters (p, L, H, d) known,
the flow rate Q is measured and the viscosity calculated,
assuming a laminar-flow pipe loss from Chap. 6, iy =
(32uLV)/(pgd®). Heat transfer and all other losses are neg-
ligible. (a) Derive a formula for the viscosity w of the fluid.
(b) Calculate . for the case d = 2 mm, p = 800 kg/m’, L
=95 cm, H = 30 cm, and Q = 760 cm’/h. (¢) What is
your guess of the fluid in part (b)? (d) Verify that the
Reynolds number Re, is less than 2000 (laminar pipe flow).

P3.178 The horizontal pump in Fig. P3.178 discharges 20°C

water at 57 m*/h. Neglecting losses, what power in kW is
delivered to the water by the pump?
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average velocity in the pipe. If the pump is 75 percent effi-
cient, what horsepower is needed to drive it?

Water level \V4 P3.181 A typical pump has a head that, for a given shaft rotation
T = rate, varies with the flow rate, resulting in a pump per-
I formance curve as in Fig. P3.181. Suppose that this pump
1 is 75 percent efficient and is used for the system in Prob.

3.180. Estimate (a) the flow rate, in gal/min, and (b) the
horsepower needed to drive the pump.

300 \

200

Pump performance

|
j

100

0 1 2 3 4
— Flow rate, ft3/s

P3.177 0 P3.181
P3.182 The insulated tank in Fig. P3.182 is to be filled from a
120 kPa high-pressure air supply. Initial conditions in the tank are
T = 20°C and p = 200 kPa. When the valve is opened,
the initial mass flow rate into the tank is 0.013 kg/s.
Assuming an ideal gas, estimate the initial rate of tem-
perature rise of the air in the tank.

P3.178 D,Z3cm PumP Dy =9em Valve Air supply:
T, =20°C
P3.179 Steam enters a horizontal turbine at 350 Ibf/in? absolute, Tank : U =200 L [ ] —~—
580°C, and 12 ft/s and is discharged at 110 ft/s and 25°C P, =1500 kPa
saturated conditions. The mass flow is 2.5 Ibm/s, and the

heat losses are 7 Btu/lb of steam. If head losses are neg-
ligible, how much horsepower does the turbine develop? P3.182
P3.180 Water at 20°C is pumped at 1500 gal/min from the lower
to the upper reservoir, as in Fig. P3.180. Pipe friction
losses are approximated by A, ~ 27V?/(2g), where V is the

P3.183 The pump in Fig. P3.183 creates a 20°C water jet oriented
to travel a maximum horizontal distance. System friction
head losses are 6.5 m. The jet may be approximated by the
trajectory of frictionless particles. What power must be

2, =150 ft delivered by the pump?

Jet

25 m

P3.180

P3.183
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P3.184

The large turbine in Fig. P3.184 diverts the river flow
under a dam as shown. System friction losses are
hy = 3.5V%/(2g), where V is the average velocity in
the supply pipe. For what river flow rate in m*/s will the
power extracted be 25 MW? Which of the two possible
solutions has a better “conversion efficiency”?

P3.184 Turbine

Word Problems

W3.1

W3.2

W3.3

W34

Derive a control volume form of the second law of
thermodynamics. Suggest some practical uses for your
relation in analyzing real fluid flows.

Suppose that it is desired to estimate volume flow Q
in a pipe by measuring the axial velocity u(r) at spe-
cific points. For cost reasons only three measuring
points are to be used. What are the best radii selec-
tions for these three points?

Consider water flowing by gravity through a short
pipe connecting two reservoirs whose surface levels
differ by an amount Az. Why does the incompress-
ible frictionless Bernoulli equation lead to an
absurdity when the flow rate through the pipe is
computed? Does the paradox have something to do
with the length of the short pipe? Does the paradox
disappear if we round the entrance and exit edges of
the pipe?

Use the steady flow energy equation to analyze flow
through a water faucet whose supply pressure is py.

Fundamentals of Engineering Exam Problems

FE3.1

In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the flow rate is 160 gal/min,
what is the average velocity at section 1?

(a) 2.6 m/s, (b) 0.81 m/s, (c) 93 m/s, (d) 23 m/s,

(e) 1.62 m/s

P3.185 Kerosine at 20°C fiws through the pump in Fig. P3.185

W3.5

W3.6

W3.7

FE3.2

at 2.3 ft*/s. Head losses between 1 and 2 are 8 ft, and the
pump delivers 8 hp to the flow. What should the mercury
manometer reading £ ft be?

D,=6in

Mercury

P3.185

What physical mechanism causes the flow to vary
continuously from zero to maximum as we open the
faucet valve?

Consider a long sewer pipe, half full of water, sloping
downward at angle 6. Antoine Chéy in 1768 deter-
mined that the average velocity of such an open chan-
nel flow should be V= CVRtan 0, where R is the
pipe radius and C is a constant. How does this famous
formula relate to the steady flow energy equation
applied to a length L of the channel?

Put a table tennis ball in a funnel, and attach the small
end of the funnel to an air supply. You probably won’t
be able to blow the ball either up or down out of the
funnel. Explain why.

How does a siphon work? Are there any limitations
(such as how high or how low can you siphon water
away from a tank)? Also, how far—could you use a
flexible tube to siphon water from a tank to a point
100 ft away?

In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the flow rate is 160 gal/min
and friction is neglected, what is the gage pressure at
section 1?



FE3.3

FE3.4

FE3.5

FE3.6

(a) 1.4 kPa, (b) 32 kPa, (c) 43 kPa, (d) 29 kPa,

(e) 123 kPa

In Fig. FE3.1 water exits from a nozzle into atmo-
spheric pressure of 101 kPa. If the exit velocity is
V, = 8 m/s and friction is neglected, what is the axial
flange force required to keep the nozzle attached to
pipe 1?

(a) 11 N, (b) 56 N, (¢) 83 N, (d) 123 N, (e) 110 N

7cm
l l4cm

Jet

— (D 2) —

=101 kPa

P atm

FE3.1

In Fig. FE3.1 water exits from a nozzle into atmo-
spheric pressure of 101 kPa. If the manometer fluid
has a specific gravity of 1.6 and 7 = 66 cm, with
friction neglected, what is the average velocity at
section 27

(a) 4.55 m/s, (b) 2.4 m/s, (c) 2.95 m/s, (d) 5.55 m/s,
(e) 3.4 m/s

A jet of water 3 cm in diameter strikes normal to a
plate as in Fig. FE3.5. If the force required to hold the
plate is 23 N, what is the jet velocity?

(a) 2.85 m/s, (b) 5.7 m/s, (c) 8.1 m/s, (d) 4.0 m/s,
(e) 23 m/s

~<—— F=23N

FE3.5 /

A fireboat pump delivers water to a vertical nozzle
with a 3:1 diameter ratio, as in Fig. FE3.6. If friction

FE3.7

FE3.8

FE3.9

FE3.10

Fundamentals of Engineering Exam Problems 225

T d=4cm
70 cm
———d=12cm
120 cm
YA
Water
FE3.6

is neglected and the flow rate is 500 gal/min, how high
will the outlet water jet rise?

(@) 2.0 m, (b) 9.8 m, (¢) 32 m, (d) 64 m, (¢) 98 m
A fireboat pump delivers water to a vertical nozzle with
a 3:1 diameter ratio, as in Fig. FE3.6. If friction is neg-
lected and the pump increases the pressure at section 1
to 51 kPa (gage), what will be the resulting flow rate?
(a) 187 gal/min, (b) 199 gal/min, (¢) 214 gal/min,
(d) 359 gal/min, (e) 141 gal/min

A fireboat pump delivers water to a vertical nozzle
with a 3:1 diameter ratio, as in Fig. FE3.6. If duct
and nozzle friction are neglected and the pump pro-
vides 12.3 ft of head to the flow, what will be the out-
let flow rate?

(a) 85 gal/min, (b) 120 gal/min, (c) 154 gal/min,
(d) 217 gal/min, (e) 285 gal/min

Water flowing in a smooth 6-cm-diameter pipe enters
a venturi contraction with a throat diameter of 3 cm.
Upstream pressure is 120 kPa. If cavitation occurs in
the throat at a flow rate of 155 gal/min, what is the
estimated fluid vapor pressure, assuming ideal fric-
tionless flow?

(a) 6 kPa, (b) 12 kPa, (c) 24 kPa, (d) 31 kPa,

(e) 52 kPa

Water flowing in a smooth 6-cm-diameter pipe enters
a venturi contraction with a throat diameter of 4 cm.
Upstream pressure is 120 kPa. If the pressure in the
throat is 50 kPa, what is the flow rate, assuming ideal
frictionless flow?

(a) 7.5 gal/min, (b) 236 gal/min, (c¢) 263 gal/min,

(d) 745 gal/min, (e) 1053 gal/min
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Comprehensive Problems

C3.1

C3.2

C3.3

In a certain industrial process, oil of density p
flows through the inclined pipe in Fig. C3.1. A U-tube
manometer, with fluid density p,,, measures the
pressure difference between points 1 and 2, as shown.
The pipe flow is steady, so that the fluids in the
manometer are stationary. (a) Find an analytic expres-
sion for p; — p, in terms of the system parameters.
(b) Discuss the conditions on % necessary for there to
be no flow in the pipe. (¢) What about flow up, from 1
to 2?7 (d) What about flow down, from 2 to 1?

C3.1 ——r—]

A rigid tank of volume V" = 1.0 m® is initially filled
with air at 20°C and p, = 100 kPa. At time ¢ = 0, a vac-
uum pump is turned on and evacuates air at a constant
volume flow rate Q = 80 L/min (regardless of the pres-
sure). Assume an ideal gas and an isothermal process.
(a) Set up a differential equation for this flow. (b) Solve
this equation for ¢ as a function of (¥, Q, p, po).
(¢) Compute the time in minutes to pump the tank down
to p = 20 kPa. Hint: Your answer should lie between
15 and 25 min.

Suppose the same steady water jet as in Prob. P3.40 (jet
velocity 8 m/s and jet diameter 10 cm) impinges instead
on a cup cavity as shown in Fig. C3.3. The water is
turned 180° and exits, due to friction, at lower veloc-
ity, V, = 4 m/s. (Looking from the left, the exit jet is a
circular annulus of outer radius R and thickness £, flow-
ing toward the viewer.) The cup has a radius of curva-
ture of 25 cm. Find (a) the thickness i of the exit
jet and (b) the force F required to hold the cupped
object in place. (¢) Compare part (b) to Prob. 3.40,
where F = 500 N, and give a physical explanation as
to why F has changed.

C34

C3.3

The air flow underneath an air hockey puck is very
complex, especially since the air jets from the air
hockey table impinge on the underside of the puck at
various points nonsymmetrically. A reasonable approx-
imation is that at any given time, the gage pressure on
the bottom of the puck is halfway between zero (atmos-
pheric pressure) and the stagnation pressure of the
impinging jets. (Stagnation pressure is defined as
Po = %pret.) (a) Find the jet velocity Vi required to
support an air hockey puck of weight W and diameter
d. Give your answer in terms of W, d, and the density
p of the air. (b) For W = 0.05 Ibf and d = 2.5 in, esti-
mate the required jet velocity in ft/s.

1

2

1 Atmosphere

C3.5 1

21



C3.5

Neglecting friction sometimes leads to odd results. You
are asked to analyze and discuss the following example
in Fig. C3.5. A fan blows air through a duct from
section 1 to section 2, as shown. Assume constant air

Design Project

D3.1

°

Let us generalize Probs. P3.180 and P3.181, in which a
pump performance curve was used to determine the
flow rate between reservoirs. The particular pump in
Fig. P3.181 is one of a family of pumps of similar shape,
whose dimensionless performance is as follows:

Head:
0o

=~ 6.04 — 161
¢ (¢ v

:I’lTD% and {Z

Efficiency:

n = 70{ — 91,5004 _ power to water
, power input
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The differential equations of this chapter may be modeled by Computational Fluid Dynamics
(CFD) for almost any flow problem. The example above shows the computed velocity vectors
for flow past a curving, spinning soccer ball. This CFD project, headed by Dr. Keith Hanna
of FLUENT Inc., was inspired by a miraculous free kick by Brazil’s Roberto Carlos

at the World Cup. Carlos’ kick sailed high and wide to the right and then curved down
over the defenders’ heads into the net. The curved trajectory is called the Magnus effect
(Heinrich Magnus, 1853). The velocities in the figure are used to compute the surface pressures
and shear stresses, which are then summed to yield the transient force on the ball.

(Image Courtesy of ANSYS. Inc.)
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Chapter 4
Differential Relations
for Fluid Flow

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking
an estimate of gross effects (mass flow, induced force, energy change) over a fiite
region or control volume or (2) seeking the point-by-point details of a flow pattern
by analyzing an infiitesimal region of the flow. The former or gross-average view-
point was the subject of Chap. 3.

This chapter treats the second in our trio of techniques for analyzing fluid motion:
small-scale, or differential, analysis. That is, we apply our four basic conservation
laws to an infinitesimally small control volume or, alternately, to an infinitesimal fluid
system. In either case the results yield the basic differential equations of fluid motion.
Appropriate boundary conditions are also developed.

In their most basic form, these differential equations of motion are quite difficult
to solve, and very little is known about their general mathematical properties. How-
ever, certain things can be done that have great educational value. First, as shown in
Chap. 5, the equations (even if unsolved) reveal the basic dimensionless parameters
that govern fluid motion. Second, as shown in Chap. 6, a great number of useful solu-
tions can be found if one makes two simplifying assumptions: (1) steady flow and (2)
incompressible flow. A third and rather drastic simplification, frictionless flow, makes
our old friend the Bernoulli equation valid and yields a wide variety of idealized, or
perfect-flid, possible solutions. These idealized flows are treated in Chap. 8, and we
must be careful to ascertain whether such solutions are in fact realistic when com-
pared with actual fluid motion. Finally, even the difficult general differential equa-
tions now yield to the approximating technique known as computational fluid dynam-
ics (CFD) whereby the derivatives are simulated by algebraic relations between a
finite number of grid points in the flow field, which are then solved on a computer.
Reference 1 is an example of a textbook devoted entirely to numerical analysis of
fluid motion.

229



230 Chapter 4 Differential Relations for Fluid Flow

4.1 The Acceleration Field
of a Fluid

In Sec. 1.7 we established the cartesian vector form of a velocity field that varies in
space and time:

Vr, ) =iu(x, y, z, ) + julx, y, 2, ) + kw(x, y, z, 1) (1.4)

This is the most important variable in fluid mechanics: Knowledge of the velocity vector
field is nearly equivalent to solving a fluid flow problem. Our coordinates are fixed in space,
and we observe the fluid as it passes by—as if we had scribed a set of coordinate lines
on a glass window in a wind tunnel. This is the eulerian frame of reference, as opposed
to the lagrangian frame, which follows the moving position of individual particles.

To write Newton’s second law for an infinitesimal fluid system, we need to cal-
culate the acceleration vector field a of the flow. Thus we compute the total time
derivative of the velocity vector:

dV  .du  dv dw
a=—=i—+j—+k—
dt dt dt dt
Since each scalar component (u, v, w) is a function of the four variables (x, y, z, 1),
we use the chain rule to obtain each scalar time derivative. For example,
d
—M(X,y,z,f) — % + %@ + %ﬂ + %%
dt ot  odxdt dydt 0z dt

But, by definition, dx/dt is the local velocity component u, and dy/dt = v, and dz/dt
= w. The total time derivative of # may thus be written as follows, with exactly sim-
ilar expressions for the time derivatives of v and w:

@ ou ou ou % a_u

a, = =—t+tu—+tv—+w_— = + (V-V)u
dt ot x dy 0z ot
dv v Jv Jv v oJv
ay=— ="+u—+v—+tw—-—=—+ V-V 4.1
dt ot x dy 0z ot
dw ow ow ow ow w
a=—=—"+u—+tv—+tw—=—+(V:-V)w
dt ot 0x ay dz ot

Summing these into a vector, we obtain the total acceleration:

dv 9V <8V oV aV) oV
a == =

— A LAMA SRAL AT ) ¢ 42
o \"ax Ve ") T a TV 4.2)

Local Convective

The term 0V/dt is called the local acceleration, which vanishes if the flow is steady—
that is, independent of time. The three terms in parentheses are called the convective
acceleration, which arises when the particle moves through regions of spatially vary-
ing velocity, as in a nozzle or diffuser. Flows that are nominally “steady” may have
large accelerations due to the convective terms.

Note our use of the compact dot product involving V and the gradient operator V:

P 9 9 d dJ d
u—+v—+w—=V:-V  where V=i—+j—+k—
ox dy 0z ox dy 0z

The total time derivative—sometimes called the substantial or material derivative—
concept may be applied to any variable, such as the pressure:
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d—pza—p+ua—p+va—p+wa—p=a—p+(V~V)p (4.3)
dt ot ax dy dz ot
Wherever convective effects occur in the basic laws involving mass, momentum, or
energy, the basic differential equations become nonlinear and are usually more com-
plicated than flows that do not involve convective changes.

We emphasize that this total time derivative follows a particle of fixed identity,
making it convenient for expressing laws of particle mechanics in the eulerian fluid
field description. The operator d/dt is sometimes assigned a special symbol such as
D/Dt as a further reminder that it contains four terms and follows a fixed particle.

As another reminder of the special nature of d/dt, some writers give it the name
substantial or material derivative.

EXAMPLE 4.1

Given the eulerian velocity vector field
V =34 + xzj + v’k

find the total acceleration of a particle.

Solution

o Assumptions: Given three known unsteady velocity components, u = 3¢, v = xz, and
2

w =ty
Approach: Carry out all the required derivatives with respect to (x, y, z, f), substitute
into the total acceleration vector, Eq. (4.2), and collect terms.

Solution step 1: First work out the local acceleration aV/dt:

WV w000 Pk
oV _u v w3 9 9 2 = 3
o o Var o o 15 ot Y e

Solution step 2: In a similar manner, the convective acceleration terms, from Eq. (4.2),
are

oV ad
u— = 3t)— 3t + xzj + y’k) = 30)(©0i + zj + 0k) = 31z
dx dax
v J . . 2 . .
vaf = (xz)a*(Stl + xzj + ty’k) = (x2)(0i + 0j + 21yk) = 2txyz k
y W
oV _ 2 i q q sy — DN g _ 2 q
wfa —(ty)a(311+sz+tyk)—(ty)(01+xJ+0k)—txyJ
Z Z

e Solution step 3: Combine all four terms above into the single “total” or “substantial”
derivative:

av_v, NV vy (i + y’k) + 31z7j + 20xyzk + 07
—_— = — +v— — = (31
a o Max " Vay ez ) R S L

=3i + Bz + my)j + O + 2xy2)k  Ans.

e Comments: Assuming that V is valid everywhere as given, this total acceleration vector
dV/dt applies to all positions and times within the flow field.
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Fig. 4.1 Elemental cartesian fixed
control volume showing the inlet
and outlet mass flows on the x
faces.

4.2 The Differential Equation
of Mass Conservation

y
Control volume
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Conservation of mass, often called the continuity relation, states that the fluid mass
cannot change. We apply this concept to a very small region. All the basic differen-
tial equations can be derived by considering either an elemental control volume or an
elemental system. We choose an infinitesimal fixed control volume (dx, dy, dz), as in
Fig. 4.1, and use our basic control volume relations from Chap. 3. The flow through
each side of the element is approximately one-dimensional, and so the appropriate mass
conservation relation to use here is

9
J a_ﬁ;do'/ + E PiAVD)ou — E PiAiVi)in =0 (3.22)
CV i i
The element is so small that the volume integral simply reduces to a differential term:

j a—pd°[/ ~ %dxdydz
oy Ot at
The mass flow terms occur on all six faces, three inlets and three outlets. We make use
of the field or continuum concept from Chap. 1, where all fluid properties are consid-
ered to be uniformly varying functions of time and position, such as p = p(x, y, z, 1).
Thus, if T is the temperature on the left face of the element in Fig. 4.1, the right face will
have a slightly different temperature 7'+ (97/dx) dx. For mass conservation, if pu is
known on the left face, the value of this product on the right face is pu + (dpu/dx) dx.
Figure 4.1 shows only the mass flows on the x or left and right faces. The flows
on the y (bottom and top) and the z (back and front) faces have been omitted to avoid
cluttering up the drawing. We can list all these six flows as follows:

Face Inlet mass fiw Outlet mass fiw
J
X pu dy dz [pu + P (pu) dx} dy dz
X
dJ
y pv dx dz {pv + P (pv) dy} dx dz
Yy

J
z pw dx dy {pw + P (pw) dz} dx dy
Z
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Introduce these terms into Eq. (3.22) and we have
ap ad ad d
—dxdydz + — (pu)dxdydz + — (pv)dxdydz + — (pw)dxdydz = 0
Jt ox ay 9z

The element volume cancels out of all terms, leaving a partial differential equation
involving the derivatives of density and velocity:

9 L9 o+ L o)+ L ow) = 0 4.4
L — (pu — (pv —_— = .
ot ax PV T gy Y T g P 4

This is the desired result: conservation of mass for an infinitesimal control volume. It
is often called the equation of continuity because it requires no assumptions except that
the density and velocity are continuum functions. That is, the flow may be either steady
or unsteady, viscous or frictionless, compressible or incompressible.! However, the
equation does not allow for any source or sink singularities within the element.

The vector gradient operator

i, .0 9
V=i—+j—+k—
dx dy 0z

enables us to rewrite the equation of continuity in a compact form, not that it helps
much in finding a solution. The last three terms of Eq. (4.4) are equivalent to the
divergence of the vector pV

a9 9 9
—(pu) + —(pv) + —(pw) =V - (pV) (4.5)
ax dy Jz
so that the compact form of the continuity relation is
)
a—’; +V-(V)=0 (4.6)

In this vector form the equation is still quite general and can readily be converted to
other coordinate systems.

The most common alternative to the cartesian system is the cylindrical polar coordi-
nate system, sketched in Fig. 4.2. An arbitrary point P is defined by a distance z along
the axis, a radial distance r from the axis, and a rotation angle # about the axis. The
three independent orthogonal velocity components are an axial velocity v,, a radial
velocity v,, and a circumferential velocity vy, which is positive counterclockwise—that
is, in the direction of increasing 6. In general, all components, as well as pressure and
density and other fluid properties, are continuous functions of r, 6, z, and .

The divergence of any vector function A(r, 6, z, ) is found by making the trans-
formation of coordinates

Y

r=0 ) =ttt 2=z (4.7)

'One case where Eq. (4.4) might need special care is two-phase flw, where the density is discontin-
uous between the phases. For further details on this case, see Ref. 2, for example.
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Fig. 4.2 Definition sketch for the
cylindrical coordinate system.

Steady Compressible Flow

Typical point (1,0, z) Typical
infinitesimal
element

/ rdo
ly

7/
[ldrjoa/ 5
X7

and the result is given here without proof?

voa-~loay il ay+ Ly 4.8)
rore 7T ae YT g '

The general continuity equation (4.6) in cylindrical polar coordinates is thus

ap

12 o)+ 2L oy + Loy = 0 4.9)
—— (rpy, ———(py, - \pv) = :
gt ror PUDT e PV T WP

There are other orthogonal curvilinear coordinate systems, notably spherical polar
coordinates, which occasionally merit use in a fluid mechanics problem. We shall not
treat these systems here except in Prob. P4.12.

There are also other ways to derive the basic continuity equation (4.6) that are
interesting and instructive. One example is the use of the divergence theorem. Ask
your instructor about these alternative approaches.

If the flow is steady, d/dt = 0 and all properties are functions of position only. Equa-
tion (4.6) reduces to

J d d
Cartesian: —(pu) + — (pv) + —(pw) =0
x ay Jz

19 19 d
indrical: -— +—-— + — = .
Cylindrical o (rpv,) ;20 (pvg) Py (pv) =0 4.10)

Since density and velocity are both variables, these are still nonlinear and rather for-
midable, but a number of special-case solutions have been found.

2See, for example, Ref. 3, p. 783.
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A special case that affords great simplification is incompressible flow, where the
density changes are negligible. Then dp/dt = 0 regardless of whether the flow is
steady or unsteady, and the density can be slipped out of the divergence in Eq. (4.6)
and divided out. The result

V-v=0 (4.11)
is valid for steady or unsteady incompressible flow. The two coordinate forms are
9 9 0
Cartesian: a + x + W 0 (4.12a)
dx dy 0z
Cylindrical: li( )+li()+i()—0 (4.12b)
ylindrical: y 5y T - a9 U Py v) = .

These are linear differential equations, and a wide variety of solutions are known, as
discussed in Chaps. 6 to 8. Since no author or instructor can resist a wide variety of
solutions, it follows that a great deal of time is spent studying incompressible flows.
Fortunately, this is exactly what should be done, because most practical engineering
flows are approximately incompressible, the chief exception being the high-speed gas
flows treated in Chap. 9.

When is a given flow approximately incompressible? We can derive a nice crite-
rion by using some density approximations. In essence, we wish to slip the density
out of the divergence in Eq. (4.6) and approximate a typical term such as

dJ ou
2 ~p— 4.13
oy PO =P (4.13)
This is equivalent to the strong inequality
Jap du
—_ < —_
" 0x ‘p 0x
6 oV
or ’£‘<Lﬁ (4.14)
p \%

As shown in Eq. (1.38), the pressure change is approximately proportional to the den-
sity change and the square of the speed of sound a of the fluid:

dp = a*p (4.15)

Meanwhile, if elevation changes are negligible, the pressure is related to the velocity
change by Bernoulli’s equation (3.52):

op = —pVéV (4.16)

Combining Egs. (4.14) to (4.16), we obtain an explicit criterion for incompressible flow:

V2
5= Ma<1 4.17)
a

where Ma = V/a is the dimensionless Mach number of the flow. How small is small?
The commonly accepted limit is

Ma = 0.3 (4.18)
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For air at standard conditions, a flow can thus be considered incompressible if the
velocity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of air-
flows: automobile and train motions, light aircraft, landing and takeoff of high-speed
aircraft, most pipe flows, and turbomachinery at moderate rotational speeds. Further,
it is clear that almost all liquid flows are incompressible, since flow velocities are
small and the speed of sound is very large.’

Before attempting to analyze the continuity equation, we shall proceed with the
derivation of the momentum and energy equations, so that we can analyze them as a
group. A very clever device called the stream function can often make short work of
the continuity equation, but we shall save it until Sec. 4.7.

One further remark is appropriate: The continuity equation is always important and
must always be satisfied for a rational analysis of a flow pattern. Any newly discov-
ered momentum or energy ‘“‘solution” will ultimately fail when subjected to critical
analysis if it does not also satisfy the continuity equation.

EXAMPLE 4.2

Under what conditions does the velocity field
V =(ax + by + c,2i + (ayx + by + ¢,2)j + (azx + byy + c32)k

where a;, by, etc. = const, represent an incompressible flow that conserves mass?

Solution

Recalling that V = ui + vj + wk, we see that u = (a;x + b;y + ¢,z), etc. Substituting into
Eq. (4.12a) for incompressible continuity, we obtain

J J J
(a1x + by + c12) + ——(axx + boy + c7) + —(azx + b3y + ¢c32) = 0
ax dy 0z

or a; +by+c3=0 Ans.

At least two of constants aj, b,, and c; must have opposite signs. Continuity imposes no
restrictions whatever on constants b,, ¢;, a,, ¢», as, and bz, which do not contribute to a
volume increase or decrease of a differential element.

EXAMPLE 4.3

An incompressible velocity field is given by
u = a(x* — % v unknown w=b

where a and b are constants. What must the form of the velocity component v be?

3An exception occurs in geophysical flows, where a density change is imposed thermally or mechan-
ically rather than by the flow conditions themselves. An example is fresh water layered upon saltwater
or warm air layered upon cold air in the atmosphere. We say that the fluid is stratifid, and we must
account for vertical density changes in Eq. (4.6) even if the velocities are small.
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Solution

Again Eq. (4.12a) applies:

dv  db
*(axz—ayz)-i-f—i-f—o
5 dy 0z
d
or == 2ax )
dy
This is easily integrated partially with respect to y:
v(x, y, 2, 1) = —2axy + f(x, z, 1) Ans.

This is the only possible form for v that satisfies the incompressible continuity equation.
The function of integration f is entirely arbitrary since it vanishes when v is differentiated
with respect to y.*

EXAMPLE 4.4

A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15°C and 1-atm pres-
sure. Estimate the maximum allowable impeller rotational speed to avoid compressibility
effects at the blade tips.

Solution

o Assumptions: The maximum fluid velocity is approximately equal to the impeller tip
speed:

Vinax = O ax where r,,, = D/2 = 0.20 m

Approach: Find the speed of sound of hydrogen and make sure that V,,,, is much less.
Property values: From Table A.4 for hydrogen, R = 4124 m?/(s> — K) and k = 1.41.
From Eq. (1.39) at 15°C = 288K, compute the speed of sound:

ay, = VART = \V/1.41[4124 m*/(s> — K)](288 K) = 1294 m/s

Final solution step: Use our rule of thumb, Eq. (4.18), to estimate the maximum impeller
speed:

V=Qr,, =03a or 0(0.2 m) = 0.3(1294 m/s)

d
Solve for () = 1940 % ~ 18,500 — s,

min

e Comments: This is a high rate because the speed of sound of hydrogen, a light gas, is
nearly four times greater than that of air. An impeller moving at this speed in air would
create tip shock waves.

“This is a very realistic flow that simulates the turning of an inviscid fluid through a 60° angle; see
Examples 4.7 and 4.9.
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4.3 The Differential Equation
of Linear Momentum

This section uses an elemental volume to derive Newton’s Law for a moving fluid. An
alternate approach, which the reader might pursue, would be a force balance on an ele-
mental moving particle. Having done it once in Sec. 4.2 for mass conservation, we can
move along a little faster this time. We use the same elemental control volume as in
Fig. 4.1, for which the appropriate form of the linear momentum relation is

d . .
E F = 5([ Vp dOV) + E (M Vou — E 1,V Din (3.40)
cv
Again the element is so small that the volume integral simply reduces to a derivative term:
d d
— (Vpd¥V) = —(pV) dxdy dz (4.19)
at at
The momentum fluxes occur on all six faces, three inlets and three outlets. Refer-

ring again to Fig. 4.1, we can form a table of momentum fluxes by exact analogy
with the discussion that led up to the equation for net mass flux:

Faces Inlet momentum fix Outlet momentum flx

J

X puV dy dz {puV + i (puV) dx} dy dz
X
J

y pvV dx dz [va + . (pvV) dy} dx dz
y
ad

z pwV dx dy [pwV + P (pwV) dz} dx dy
4

Introduce these terms and Eq. (4.19) into Eq. (3.40), and get this intermediate result:
J J J d

E F = dxdy dz[— (V) + — (puV) + — (pvV) + — (pwV)} (4.20)
ot ax dy 0z

Note that this is a vector relation. A simplification occurs if we split up the term in
brackets as follows:

9 9 9 9
— (V) + — (puV) + — (pvV) + — (pwV
o (pV) e (puV) o (pvV) Py (pwV)

oV v av
) “4.21)

ad A%
=V{—p+V-(pV)} +p<—+u—+v—+w—
ot ot 0x dy Jz
The term in brackets on the right-hand side is seen to be the equation of continuity,
Eq. (4.6), which vanishes identically. The long term in parentheses on the right-hand
side is seen from Eq. (4.2) to be the total acceleration of a particle that instantaneously
occupies the control volume:
WV AV Vv v

TRNLA SN
o oax Vay W a 4.2)

Thus we have now reduced Eq. (4.20) to

v
SF=p o dx dy dz (4.22)
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It might be good for you to stop and rest now and think about what we have just
done. What is the relation between Egs. (4.22) and (3.40) for an infinitesimal control
volume? Could we have begun the analysis at Eq. (4.22)?

Equation (4.22) points out that the net force on the control volume must be of dif-
ferential size and proportional to the element volume. These forces are of two types,
body forces and surface forces. Body forces are due to external fields (gravity, mag-
netism, electric potential) that act on the entire mass within the element. The only
body force we shall consider in this book is gravity. The gravity force on the differ-
ential mass p dx dy dz within the control volume is

d¥,., = pgdxdy dz (4.23)

where g may in general have an arbitrary orientation with respect to the coordinate sys-
tem. In many applications, such as Bernoulli’s equation, we take z “up,” and g = —gk.

The surface forces are due to the stresses on the sides of the control surface. These
stresses are the sum of hydrostatic pressure plus viscous stresses 7; that arise from
motion with velocity gradients:

—p + 7 T, T.

yx %
oy = Ty -p t T Toy (4.24)
Txz Tyz -t T

The subscript notation for stresses is given in Fig. 4.3. Unlike velocity V, which is a
three-component vector; stresses o; and 7; and strain rates &; are nine-component
tensors and require two subscripts to define each component. For further study of
tensor analysis, see Refs. 6, 11, or 13.

It is not these stresses but their gradients, or differences, that cause a net force on
the differential control surface. This is seen by referring to Fig. 4.4, which shows only

> O,

2z

0;;=Stress in j
direction on a face
normal to i axis
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Fig. 4.4 Elemental cartesian fixed
control volume showing the surface
forces in the x direction only.

90y,
(0, + —= dy) dxdz
) 3y

0, dx dy

- — —

Gy dy dz —— L (o, + % dx) dy dz

~

Z

J0,
(©,+ 2% dz) dxdy
a0z

the x-directed stresses to avoid cluttering up the drawing. For example, the leftward
force o, dy dz on the left face is balanced by the rightward force o, dy dz on the
right face, leaving only the net rightward force (do,./dx) dx dy dz on the right face.
The same thing happens on the other four faces, so that the net surface force in the
x direction is given by

d d d
de,surf = a (O-)CX) + 5 (a-yx) + 8_1 (o-zx) dx dy dZ (425)

We see that this force is proportional to the element volume. Notice that the stress
terms are taken from the rop row of the array in Eq. (4.24). Splitting this row into
pressure plus viscous stresses, we can rewrite Eq. (4.25) as

dF,  0op

3 3 3
=+ —(r) +—(r,) + — :
TR o ap (T 3y (7 + o~ (720 (4.26)

where dV = dx dy dz. In exactly similar manner, we can derive the y and z forces
per unit volume on the control surface:

dF,  op P 9

S B L)) — (7,

dv dy  ox (7o) dy (T) 0z (72)

dF. a9 p 9

—_—t = = 4} — + — )+ — (7. 4.27
77 PN (722 P (1) Py (722 (4.27)

Now we multiply Egs. (4.26) and (4.27) by i, j, and k, respectively, and add to obtain
an expression for the net vector surface force:

(£> = -V, +(£> (4.28)
dv surf u av viscous .
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where the viscous force has a total of nine terms:

(E) = l<% + % + %)
av viscous dx ay 0z

n j(arxy n 0Tyy n %)
0x ay Jz

9 9 P
+—k<—52+-—524-—1§) (4.29)
ax dy dz

Since each term in parentheses in (4.29) represents the divergence of a stress com-
ponent vector acting on the x, y, and z faces, respectively, Eq. (4.29) is sometimes
expressed in divergence form:

dF
(W)viscous - V . Tij (430)
XX X X
where Ti = | Ty Ty Ty (4.31)
T)(Z T)’Z TZZ

is the viscous stress tensor acting on the element. The surface force is thus the sum
of the pressure gradient vector and the divergence of the viscous stress tensor. Sub-
stituting into Eq. (4.22) and utilizing Eq. (4.23), we have the basic differential momen-
tum equation for an infinitesimal element:

dv

pg —Vp+V- T = pE (4.32)

dv 9V A% A% A%
where —=— 4+ y—+v—+w— (4.33)

dt ot 0x ay 0z

We can also express Eq. (4.32) in words:
Gravity force per unit volume + pressure force per unit volume

+ viscous force per unit volume = density X acceleration (4.34)

Equation (4.32) is so brief and compact that its inherent complexity is almost invis-
ible. It is a vector equation, each of whose component equations contains nine terms.
Let us therefore write out the component equations in full to illustrate the mathe-
matical difficulties inherent in the momentum equation:

op | 0Ty | 0Ty | 0Ty u du u du
pgy — — + + + —=Z=pl—+u—+v—+w—

u v w
ax ax dy 0z ot 0x dy 0z

op 01, 0Ty, | 0Ty Jv v v Jdv
pgy ———t—t+—+—=pl - tu—Ftv—-—+w_— (4.35)
dy 0x dy Jz ) ad

Jd oT a7, a7, aw ow aw ow
pg. — L+ ey Ty T ( M)

9z ox dy 0z
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Inviscid Flow: Euler$ Equation

Newtonian Fluid:
Navier-Stokes Equations

This is the differential momentum equation in its full glory, and it is valid for any
fluid in any general motion, particular fluids being characterized by particular viscous
stress terms. Note that the last three “convective” terms on the right-hand side of each
component equation in (4.35) are nonlinear, which complicates the general mathe-
matical analysis.

Equation (4.35) is not ready to use until we write the viscous stresses in terms of
velocity components. The simplest assumption is frictionless flow 7;; = 0, for which
Eq. (4.32) reduces to

dv
- Vp=p— 4.36
pg—Vp=p (4.36)
This is Eulers equation for inviscid flow. We show in Sec. 4.9 that Euler’s equation
can be integrated along a streamline to yield the frictionless Bernoulli equation, (3.52)
or (3.54). The complete analysis of inviscid flow fields, using continuity and the
Bernoulli relation, is given in Chap. 8.

For a newtonian fluid, as discussed in Sec. 1.9, the viscous stresses are proportional
to the element strain rates and the coefficient of viscosity. For incompressible flow,
the generalization of Eq. (1.23) to three-dimensional viscous flow is’

A L
XX ox yy ay Z 9z
Ju v aw u
Ty = Tyx = p‘(_ay + —ax) T = Ty = M(—ax + —az> (4.37)
v ow
N Caan

where u is the viscosity coefficient. Substitution into Eq. (4.35) gives the differential
momentum equation for a newtonian fluid with constant density and viscosity:

ap Pu  Pu  u du
Pg,\-—wCJFM(axQﬂLayQﬂLaZz) =P
pg_@+ﬂ(%+a%}+a%> =p@ (4.38)
Y 9y x> 9y* 97 dt -
S
0z x> 9y o dt

These are the incompressible flow Navier-Stokes equations, named after C. L. M. H.
Navier (1785-1836) and Sir George G. Stokes (1819-1903), who are credited with
their derivation. They are second-order nonlinear partial differential equations and are
quite formidable, but solutions have been found to a variety of interesting viscous

SWhen compressibility is significant, additional small terms arise containing the element volume
expansion rate and a second coefficient of viscosity; see Refs. 4 and 5 for details.
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flow problems, some of which are discussed in Sec. 4.11 and in Chap. 6 (see also
Refs. 4 and 5). For compressible flow, see Eq. (2.29) of Ref. 5.

Equations (4.38) have four unknowns: p, u, v, and w. They should be combined
with the incompressible continuity relation [Egs. (4.12)] to form four equations in
these four unknowns. We shall discuss this again in Sec. 4.6, which presents the appro-
priate boundary conditions for these equations.

Even though the Navier-Stokes equations have only a limited number of known
analytical solutions, they are amenable to fine-gridded computer modeling [1]. The
field of CFD is maturing fast, with many commercial software tools available. It is
possible now to achieve approximate, but realistic, CFD results for a wide variety of
complex two- and three-dimensional viscous flows.

EXAMPLE 4.5

Take the velocity field of Example 4.3, with b = 0 for algebraic convenience
u=ax>—y) v=-2axy w=0

and determine under what conditions it is a solution to the Navier-Stokes momentum equa-
tions (4.38). Assuming that these conditions are met, determine the resulting pressure dis-
tribution when z is “up” (g, =0, g, = 0, g, = —2).

Solution

o Assumptions: Constant density and viscosity, steady flow (u and v independent of time).
e Approach: Substitute the known (u, v, w) into Eqs. (4.38) and solve for the pressure gra-

dients. If a unique pressure function p(x, y, z) can then be found, the given solution is exact.
 Solution step 1: Substitute (4, v, w) into Egs. (4.38) in sequence:

ap du Ju 5 3 5
p0) ——+ uRa—2a+0)=plu—+v—|=2apx + xy)
ax ax dy
) ad ad
p(0) — i +wO+0+0) = p<ul + vl> = 2azp(x2y + y3)
dy 0x ay
) d a
p(—g)——p+/_L(0+0+0) Zp(ul+vl)=0
0z 0x dy

Rearrange and solve for the three pressure gradients:

Lo 2dpd + ) L= —2adpdy+y) L= —pg M)
0x dy 0z

e Comment 1: The vertical pressure gradient is hydrostatic. (Could you have predicted this by

noting in Egs. (4.38) that w = 0?7) However, the pressure is velocity-dependent in the xy plane.

e Solution step 2: To determine if the x and y gradients of pressure in Eq. (1) are compati-

ble, evaluate the mixed derivative,(azp/ax dy); that is, cross-differentiate these two equations:

a(p)_a
?y(@) = o 250 Al = 4

3 (ap\ 9
5(5) = o [F2a%(%y + 3] = —dd’pxy
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4.4 The Differential Equation
of Angular Momentum

Comment 2: Since these are equal, the given velocity distribution is indeed an exact
solution of the Navier-Stokes equations.

Solution step 3: To find the pressure, integrate Egs. (1), collect, and compare. Start with
dp/dx. The procedure requires care! Integrate partially with respect to x, holding y and z
constant:

5 X4 X2y2
e = 200\ 4+ | T HO D) ()

ap
p= Ja dx|,. = J—2a2p(x3 + xy

Note that the “constant” of integration f is a function of the variables that were not inte-
grated. Now differentiate Eq. (2) with respect to y and compare with dp/dy from Eq. (1):

p af ap
67 |(2) = Px al = |(1) = 720213(352)’ + )’3)
y
0, )
Compare: ai' = =2d%py* or f = J i dyl, = =24 p* +f2(z)
N
, N E S y“
Collect terms: So far p = —2a’p( — st + f(2) (3)

This time the “constant” of integration f, is a function of z only (the variable not inte-
grated). Now differentiate Eq. (3) with respect to z and compare with dp/dz from Eq. (1):

afh _

ap
=P =— or = —pgz+ C 4
|a> Pl loy = —pg = —pgz @

where C is a constant. This completes our three integrations. Combine Egs. (3) and (4) to
obtain the full expression for the pressure distribution in this flow:
Py, 2) = —pge = 3a’p(x* + y* + 2% + C Ans. (5)
This is the desired solution. Do you recognize it? Not unless you go back to the begin-
ning and square the velocity components:
W+ + wr = V2= a0+ oy + 20 6)
Comparing with Eq. (5), we can rewrite the pressure distribution as
p+2pV: +pgz=C @)

Comment: This is Bernoulli’s equation (3.54). That is no accident, because the velocity
distribution given in this problem is one of a family of flows that are solutions to the
Navier-Stokes equations and that satisfy Bernoulli’s incompressible equation everywhere
in the flow field. They are called irrotational flws, for which curl V.=V X V = 0. This
subject is discussed again in Sec. 4.9.

Having now been through the same approach for both mass and linear momentum,
we can go rapidly through a derivation of the differential angular momentum relation.
The appropriate form of the integral angular momentum equation for a fixed control
volume is

M, - 3[ j r X Vyp dﬂ + J FX Vp(V-mdA  (3.59)
| Jov cs



Fig. 4.5 Elemental cartesian fixed
control volume showing shear
stresses that may cause a net angu-
lar acceleration about axis O.

4.4 The Differential Equation of Angular Momentum 245

Tyt 2 (T, dy
ay -

A
6 = Rotation
angle
Ty | | + Ty + L (7)) dx
Axis O
\ /

dx
< -

We shall confine ourselves to an axis through O that is parallel to the z axis and passes
through the centroid of the elemental control volume. This is shown in Fig. 4.5. Let
0 be the angle of rotation about O of the fluid within the control volume. The only
stresses that have moments about O are the shear stresses 7, and 7,,. We can evalu-
ate the moments about O and the angular momentum terms about O. A lot of alge-
bra is involved, and we give here only the result:

19 10
— Tt 5o (1) dx —Ea_y(TyX) dy | dx dy dz

-
2 ax

Xy
—i(ddd)(dudz)@ (4.39)
o P @y auiax may) g

Assuming that the angular acceleration d6/df’ is not infinite, we can neglect all
higher-order differential terms, which leaves a finite and interesting result:

= Ty (4.40)

Tyy

Had we summed moments about axes parallel to y or x, we would have obtained
exactly analogous results:

T = T, Ty, = T, 4.41)

There is no differential angular momentum equation. Application of the integral
theorem to a differential element gives the result, well known to students of stress
analysis or strength of materials, that the shear stresses are symmetric: 7;; = 7.
This is the only result of this section.® There is no differential equation to remem-
ber, which leaves room in your brain for the next topic, the differential energy

equation.

SWe are neglecting the possibility of a finite couple being applied to the element by some powerful
external force field. See, for example, Ref. 6.
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4.5 The Differential Equation
of Energy’

Thermal Conductivity; Fouriers
Law

We are now so used to this type of derivation that we can race through the energy
equation at a bewildering pace. The appropriate integral relation for the fixed control
volume of Fig. 4.1 is

Q—WV—W,,=E(J epdﬂf)+ J (e+’—7)p(v-n)dA (3.66)
ot (6AY CS P

where WS = 0 because there can be no infinitesimal shaft protruding into the control
volume. By analogy with Eq. (4.20), the right-hand side becomes, for this tiny element,

. . i) J J J
0o-Ww,= [&(PE) + a—x(pul) + E(pv{) + a—z(pwg“)]dx dy dz

where { = e + p/p. When we use the continuity equation by analogy with Eq. (4.21),
this becomes

de

” +V-Vp+pV- V) dx dy dz (4.42)

Q—Wv=(p

To evaluate 0, we neglect radiation and consider only heat conduction through the
sides of the element. Experiments for both fluids and solids show that the vector heat
transfer per unit area, ¢, is proportional to the vector gradient of temperature, VT.
This proportionality is called Fouriers law of conduction, which is analogous to New-
ton’s viscosity law:

T T T
o g = —ko-, gy = —hoo g = ko (4.43)

where k is called the thermal conductivity, a fluid property that varies with tempera-
ture and pressure in much the same way as viscosity. The minus sign satisfies the
convention that heat flux is positive in the direction of decreasing temperature.
Fourier’s law is dimensionally consistent, and k has SI units of joules per (sec-meter-
kelvin) and can be correlated with 7 in much the same way as Eqs. (1.27) and (1.28)
for gases and liquids, respectively.

Figure 4.6 shows the heat flow passing through the x faces, the y and z heat flows
being omitted for clarity. We can list these six heat flux terms:

Faces Inlet heat fix Outlet heat fix
J
x gy dy dz {qx R (g, dX} dy dz
J
y qy dx dz q, + g (g,) dy | dx dz
J
z q. dx dy {qz + P (q) dz] dx dy

"This section may be omitted without loss of continuity.



Fig. 4.6 Elemental cartesian con-
trol volume showing heat flow and
viscous work rate terms in the x
direction.
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Heat flow per dx

unit area:
T
ax

N S — g+ % (q,) dx

dx

dy

W, —r=—e

—> W, + ai (w,) dx
X

Viscous iy

work rate yd dz
per unit

area: W =—(UTy, +UT + WT,,)

By adding the inlet terms and subtracting the outlet terms, we obtain the net heat
added to the element:

. J d d
0=—|—(q)+ —(q) +—(q)|dxdydz = =V - qdx dydz (4.44)
x dy 0z

As expected, the heat flux is proportional to the element volume. Introducing Fourier’s
law from Eq. (4.43), we have

0 =V - (kVT)dx dy dz (4.45)

The rate of work done by viscous stresses equals the product of the stress component,
its corresponding velocity component, and the area of the element face. Figure 4.6 shows
the work rate on the left x face is

W,

p = w,dydz where w, = —(ut,, + v7,, + wr,) (4.46)

(where the subscript LF stands for left face) and a slightly different work on the right
face due to the gradient in w,. These work fluxes could be tabulated in exactly the
same manner as the heat fluxes in the previous table, with w, replacing ¢, and so on.
After outlet terms are subtracted from inlet terms, the net viscous work rate becomes

. ad J
W, = — a UTye T VT + Wry) + 5 (uty, + vry, + wr,,)

)
+ P (Ut + vr,, + wr) |dx dy dz
Z

==V (V:-7pdxdydz (4.47)

We now substitute Egs. (4.45) and (4.47) into Eq. (4.43) to obtain one form of the
differential energy equation:

de
dt

where e = i1 + V2 + gz

p—+V Vp+pV V=V (kVT)+ V- (V-1

(4.48)
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A more useful form is obtained if we split up the viscous work term:
V-Ver) =V-(V-7) + (4.49)

where ® is short for the viscous-dissipation function.® For a newtonian incompress-
ible viscous fluid, this function has the form

du\? v\ aw\ | (ov  ou\
O=pl2(—) +2(—=) +2|—) +{—+—
0x ay 0z ox  dy
ow o\ o aw\?
t{—+— ) +|\—+— (4.50)
Jdy 0z Jz ox
Since all terms are quadratic, viscous dissipation is always positive, so that a viscous
flow always tends to lose its available energy due to dissipation, in accordance with
the second law of thermodynamics.
Now substitute Eq. (4.49) into Eq. (4.48), using the linear momentum equation (4.32)

to eliminate V « 7. This will cause the kinetic and potential energies to cancel, leav-
ing a more customary form of the general differential energy equation:

dii p(V-V)=V-kVT) + 4.51)

pdt

This equation is valid for a newtonian fluid under very general conditions of unsteady,
compressible, viscous, heat-conducting flow, except that it neglects radiation heat trans-
fer and internal sources of heat that might occur during a chemical or nuclear reaction.

Equation (4.51) is too difficult to analyze except on a digital computer [1]. It is
customary to make the following approximations:

dii = c,dT c,, u, k, p = const (4.52)
Equation (4.51) then takes the simpler form, for V - V = 0,

dT
pC"E =kVT + @ (4.53)

which involves temperature 7" as the sole primary variable plus velocity as a second-
ary variable through the total time-derivative operator:

dr  aT aT aT aT
—=—4u—+v—+w— (4.54)
dt ot 0x dy 0z
A great many interesting solutions to Eq. (4.53) are known for various flow condi-
tions, and extended treatments are given in advanced books on viscous flow [4, 5]
and books on heat transfer [7, 8].
One well-known special case of Eq. (4.53) occurs when the fluid is at rest or has
negligible velocity, where the dissipation ® and convective terms become negligible:

aT
pcpg = kV°’T (4.55)

The change from c, to ¢, is correct and justified by the fact that, when pressure terms
are neglected from a gas flow energy equation [4, 5], what remains is approximately an

8For further details, see, e.g., Ref. 5, p. 72.
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enthalpy change, not an internal energy change. This is called the heat conduction equa-

tion in applied mathematics and is valid for solids and fluids at rest. The solution to

Eq. (4.55) for various conditions is a large part of courses and books on heat transfer.
This completes the derivation of the basic differential equations of fluid motion.

There are three basic differential equations of fluid motion, just derived. Let us sum-
marize them here:

J
Continuity: a—’; +V-(pV) =0 (4.56)
dv
Momentum: p; =pg—-Vp+ V-1 (4.57)
di
Energy: pE +pV-V)=V - (kVT)+ (4.58)

where @ is given by Eq. (4.50). In general, the density is variable, so that these three
equations contain five unknowns, p, V, p, i, and T. Therefore we need two additional
relations to complete the system of equations. These are provided by data or alge-
braic expressions for the state relations of the thermodynamic properties:

p=ppT) a=iap,T) (4.59)

For example, for a perfect gas with constant specific heats, we complete the system with

p

=— = va dT = ¢, T + const (4.60)
RT

p
It is shown in advanced books [4, 5] that this system of equations (4.56) to (4.59) is
well posed and can be solved analytically or numerically, subject to the proper bound-
ary conditions.

What are the proper boundary conditions? First, if the flow is unsteady, there must
be an initial condition or initial spatial distribution known for each variable:

Attt = 0: p, V,p, i, T = known f(x, y, 2) 4.61)

Thereafter, for all times ¢ to be analyzed, we must know something about the vari-
ables at each boundary enclosing the flow.

Figure 4.7 illustrates the three most common types of boundaries encountered in
fluid flow analysis: a solid wall, an inlet or outlet, and a liquid—gas interface.

First, for a solid, impermeable wall, there is no slip and no temperature jump in a
viscous heat-conducting fluid:

Solid wall: Vivia = Vwan Tiwia = Twan (4.62)

The only exception to Eq. (4.62) occurs in an extremely rarefied gas flow, where
slippage can be present [5].

Second, at any inlet or outlet section of the flow, the complete distribution of veloc-
ity, pressure, and temperature must be known for all times:

Inlet or outlet: Known V, p, T (4.63)

These inlet and outlet sections can be and often are at * o, simulating a body
immersed in an infinite expanse of fluid.
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Fig. 4.7 Typical boundary condi-
tions in a viscous heat-conducting
fluid flow analysis.
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Finally, the most complex conditions occur at a liquid—gas interface, or free sur-
face, as sketched in Fig. 4.7. Let us denote the interface by

Interface: z=nx,y,1) (4.64)
Then there must be equality of vertical velocity across the interface, so that no holes

appear between liquid and gas:

dn _ dn an an
= =t , 14— 4.65
Wiia = Waas =T T T Ty T (4.65)

This is called the kinematic boundary condition.
There must be mechanical equilibrium across the interface. The viscous shear
stresses must balance:

(sz)liq = (sz)gas (Tz,r)liq = (sz)gas (466)

Neglecting the viscous normal stresses, the pressures must balance at the interface
except for surface tension effects:

Pig = Peas — YR + R (4.67)

which is equivalent to Eq. (1.33). The radii of curvature can be written in terms of
the free surface position n:

P i{ am/ox }
! T ox

V1 + (an/ax? + (am/ay)?
{ anldy
+ R
vl V1 + (am/ox? + (amlay)?

(4.68)
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Finally, the heat transfer must be the same on both sides of the interface, since no
heat can be stored in the infinitesimally thin interface:

(qZ)liq = (qz)gas (469)

Neglecting radiation, this is equivalent to

aT oT
(k _> = (k —> (4.70)
9z lig dz gas

This is as much detail as we wish to give at this level of exposition. Further and even
more complicated details on fluid flow boundary conditions are given in Refs. 5 and 9.

In the introductory analyses given in this book, such as open-channel flows in Chap.
10, we shall back away from the exact conditions (4.65) to (4.69) and assume that
the upper fluid is an “atmosphere” that merely exerts pressure on the lower fluid,
with shear and heat conduction negligible. We also neglect nonlinear terms involv-
ing the slopes of the free surface. We then have a much simpler and linear set of
conditions at the surface:

Pn  9n m
Pliq = Pgas — Y(? + a_yz Wiig =~ E

av aT
() 2o () - o
aZ liq aZ liq

In many cases, such as open-channel flow, we can also neglect surface tension, so that

pliq = Patm (472)

These are the types of approximations that will be used in Chap. 10. The nondimen-
sional forms of these conditions will also be useful in Chap. 5.

Flow with constant p, u, and k is a basic simplification that will be used, for exam-
ple, throughout Chap. 6. The basic equations of motion (4.56) to (4.58) reduce to

Continuity: V:-V=0 (4.73)
av 2
Momentum: p; =pg — Vp + uVV (4.74)
dT
Energy: pey = kVT + @ (4.75)

Since p is constant, there are only three unknowns: p, V, and T. The system is closed.’”
Not only that, the system splits apart: Continuity and momentum are independent of
T. Thus we can solve Egs. (4.73) and (4.74) entirely separately for the pressure and
velocity, using such boundary conditions as

Solid surface: V=V,u (4.76)
Inlet or outlet: Known V, p 4.77)

°For this system, what are the thermodynamic equivalents to Eq. (4.59)?
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Inviscid Flow Approximations

~

Free surface: P =P w o

(4.78)
Later, usually in another course,'® we can solve for the temperature distribution from
Eq. (4.75), which depends on velocity V through the dissipation ® and the total time-
derivative operator d/dt.

Chapter 8 assumes inviscid flow throughout, for which the viscosity u = 0. The
momentum equation (4.74) reduces to

v _ \Y 4.79

P T Pe p (4.79)

This is Eulers equation; it can be integrated along a streamline to obtain Bernoulli’s
equation (see Sec. 4.9). By neglecting viscosity we have lost the second-order deriva-
tive of V in Eq. (4.74); therefore we must relax one boundary condition on velocity.
The only mathematically sensible condition to drop is the no-slip condition at the wall.
We let the flow slip parallel to the wall but do not allow it to flow into the wall. The
proper inviscid condition is that the normal velocities must match at any solid surface:

Inviscid flow: (Vdtwia = (V)wan (4.80)
In most cases the wall is fixed; therefore the proper inviscid flow condition is
V,=20 (4.81)

There is no condition whatever on the tangential velocity component at the wall in
inviscid flow. The tangential velocity will be part of the solution to an inviscid flow
analysis (see Chap. 8).

EXAMPLE 4.6

For steady incompressible laminar flow through a long tube, the velocity distribution is given
by

r2
vZ=U<1 _ﬁ> v, =1 =0
where U is the maximum, or centerline, velocity and R is the tube radius. If the wall tem-
perature is constant at 7, and the temperature 7 = 7(r) only, find 7(r) for this flow.

Solution

With T = T(r), Eq. (4.75) reduces for steady flow to

dT  kd( dT dv,\?
Pt gy = ?E(’E) ’ “(ﬁ) o
But since v, = 0 for this flow, the convective term on the left vanishes. Introduce v, into
Eq. (1) to obtain
kd( dT dv. \? 4Uur?
m(’z) - _“(E) TR @

1%Since temperature is entirely uncoupled by this assumption, we may never get around to solving
for it here and may ask you to wait until you take a course on heat transfer.
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Multiply through by r/k and integrate once:

dT nU*rt
Pl = =
dr kR*

+C 3

Divide through by r and integrate once again:

_p,Uzr4

T =
4kR*

+ CiInr + G, )
Now we are in position to apply our boundary conditions to evaluate C; and C,.
First, since the logarithm of zero is —, the temperature at » = 0 will be infinite unless

Thus we eliminate the possibility of a logarithmic singularity. The same thing will happen
if we apply the symmetry condition d7/dr = 0 at r = 0 to Eq. (3). The constant C, is then
found by the wall-temperature condition at r = R:

U2
T=T,= —’;—k + G
UZ
or C, =T, + ’Z—k (6)
The correct solution is thus
wlU? r
r) =T, + Tk(l - F) Ans. (7)

which is a fourth-order parabolic distribution with a maximum value 7o = T,, + MUZ/(4k)
at the centerline.

We have seen in Sec. 4.6 that even if the temperature is uncoupled from our system
of equations of motion, we must solve the continuity and momentum equations simul-
taneously for pressure and velocity. The stream function i is a clever device that
allows us to satisfy the continuity equation and then solve the momentum equation
directly for the single variable . Lines of constant ¢ are streamlines of the flow.

The stream function idea works only if the continuity equation (4.56) can be
reduced to fwo terms. In general, we have four terms:

ad d d d
Cartesian: o + —(u) + —(pv) + —(pw) =0 (4.82a)
at  dx dy dz
o ap 19 19 ad
Cylindrical: — + —-— )+ —— +—(pv.) =0 4.82b
ylindrica R U R COR (4.82)

First, let us eliminate unsteady flow, which is a peculiar and unrealistic application
of the stream function idea. Reduce either of Egs. (4.82) to any two terms. The most
common application is incompressible flow in the xy plane:
du Jdv
— 4+ — =

0 4.83
dx  dy ( )
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This equation is satisfied identically if a function ¢(x, y) is defined such that Eq. (4.83)

becomes
a(a ad d
— (_4’) + — (__1#) =0 (4.84)
dx \ dy ady ox
Comparison of (4.83) and (4.84) shows that this new function ¢y must be defined such
that
_% __%
u= oy v o (4.85)
L0y oY
V=i——j—
or ! dy J 0x

Is this legitimate? Yes, it is just a mathematical trick of replacing two variables
(u and v) by a single higher-order function . The vorticity'' or curl V, is an inter-
esting function:

curl V.= —kV*%  where VX = P +
x

Py Y
F (4.86)

Thus, if we take the curl of the momentum equation (4.74) and utilize Eq. (4.86), we
obtain a single equation for ¢ for incompressible flow:

Y 9 Y 9

—— (V) — —— (V) = wW (V) (4.87)

Jdy dx dx dy
where v = u/p is the kinematic viscosity. This is partly a victory and partly a defeat:
Eq. (4.87) is scalar and has only one variable, s, but it now contains fourth-order
derivatives and probably will require computer analysis. There will be four boundary
conditions required on . For example, for the flow of a uniform stream in the x direc-
tion past a solid body, the four conditions would be

Iy a4

At infinity: —=U, —=0
dy ox

W _ W _

Jdy 0x

(4.88)
At the body:

Many examples of numerical solution of Eqs. (4.87) and (4.88) are given in Ref. 1.
One important application is inviscid, incompressible, irrotational flow'? in the xy

plane, where curl V = 0. Equations (4.86) and (4.87) reduce to

V=450 (4.89)

See Section 4.8.
12See Section 4.8.
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Fig. 4.8 Geometric interpretation
of stream function: volume flow
through a differential portion of a
control surface.
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This is the second-order Laplace equation (Chap. 8), for which many solutions
and analytical techniques are known. Also, boundary conditions like Eq. (4.88)
reduce to

At infinity: ¢ = U,y + const (4.90)
At the body: ¢ = const

It is well within our capability to find some useful solutions to Eqs. (4.89) and (4.90),
which we shall do in Chap. 8.

The fancy mathematics above would serve alone to make the stream function immor-
tal and always useful to engineers. Even better, though, ¢ has a beautiful geomet-
ric interpretation: Lines of constant iy are streamlines of the flow. This can be
shown as follows. From Eq. (1.41) the definition of a streamline in two-dimensional
flow is

& _dy
u v
or udy —vdyx =0 streamline 4.91)

Introducing the stream function from Eq. (4.85), we have

) d
—l'[ldx + —llldy =0=dy (4.92)
ox ay

Thus the change in ¢ is zero along a streamline, or
¢ = const along a streamline (4.93)

Having found a given solution #/(x, y), we can plot lines of constant ¢ to give the
streamlines of the flow.

Control surface
(unit depth

into paper
dQ=(Ven)dA=dy paper)

V=iu+jv
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Fig. 4.9 Sign convention for flow
in terms of change in stream func-
tion: (a) flow to the right if ¢ is
greater; (b) flow to the left if ¢ is
greater.

Vo<V
Yy>Y, //

Fl
ow Flow <-=——

/\_
_ D

(a) (b)

There is also a physical interpretation that relates ¢ to volume flow. From Fig. 4.8,
we can compute the volume flow dQ through an element ds of control surface of unit

depth:
(V- (W (A dx
dQ = (V-n)dA (1 oy J ax) (1 s J ds)ds(l)
= %dx + a—l/jdy =dy (4.94)
0x ay

Thus the change in ¢ across the element is numerically equal to the volume flow
through the element. The volume flow between any two streamlines in the flow field
is equal to the change in stream function between those streamlines:

2 2
Q1= J (V-n)dA = J dip =, — (4.95)
1 1

Further, the direction of the flow can be ascertained by noting whether ¢ increases or
decreases. As sketched in Fig. 4.9, the flow is to the right if ¢, is greater than ¢;, where
the subscripts stand for upper and lower, as before; otherwise the flow is to the left.

Both the stream function and the velocity potential were invented by the French
mathematician Joseph Louis Lagrange and published in his treatise on fluid mechan-
ics in 1781.

EXAMPLE 4.7

If a stream function exists for the velocity field of Example 4.5
u=ax>—y) v=—2axy w=0

find it, plot it, and interpret it.

Solution

o Assumptions: Incompressible, two-dimensional flow.
* Approach: Use the definition of stream function derivatives, Eqs. (4.85), to find

P(x, y).
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Solution step 1: Note that this velocity distribution was also examined in Example 4.3.
It satisfies continuity, Eq. (4.83), but let’s check that; otherwise ¢ will not exist:

u Jdv 0 5 5 ad
—+ —=—[alx" — y)] + —(—2axy) = 2ax + (—2ax) =0 checks
ox dy ox dy

Thus we are certain that a stream function exists.

Solution step 2: To find i, write out Egs. (4.85) and integrate:
Y

u=—=ax* — ay’ (D)
dy

P
v=-Y_ oy )
0x

and work from either one toward the other. Integrate (1) partially

3
ay
Y =a Y—TJFf(X) (3)
Differentiate (3) with respect to x and compare with (2)
d
% = 2axy + f'(x) = 2axy 4)
ax
Therefore f'(x) = 0, or f = constant. The complete stream function is thus found:
¥
Y= a(xzy = §> T+ C Ans. (5)
To plot this, set C = 0 for convenience and plot the function
3
Wy —y = £ (6)
a

for constant values of . The result is shown in Fig. E4.7a to be six 60° wedges of cir-
culating motion, each with identical flow patterns except for the arrows. Once the stream-
lines are labeled, the flow directions follow from the sign convention of Fig. 4.9. How

0
Y=2a “
Y =2a
a

—2a
\ \/
Yy
60° 60°
X
60 60 “a
60 oy
—a
O /\
a
2a

_

The origin is a
stagnation point
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Steady Plane Compressible Flow

Flow around a 60° corner

)

Incoming stream impinging
Flow around a against a 120° corner
E4.7b rounded 60° corner

can the flow be interpreted? Since there is slip along all streamlines, no streamline can
truly represent a solid surface in a viscous flow. However, the flow could represent the
impingement of three incoming streams at 60, 180, and 300°. This would be a rather unre-
alistic yet exact solution to the Navier-Stokes equations, as we showed in Example 4.5.

By allowing the flow to slip as a frictionless approximation, we could let any given
streamline be a body shape. Some examples are shown in Fig. E4.7b.

A stream function also exists in a variety of other physical situations where only
two coordinates are needed to define the flow. Three examples are illustrated here.

Suppose now that the density is variable but that w = 0, so that the flow is in the xy
plane. Then the equation of continuity becomes

d d
a—(Pu) + —(pv) =0 (4.96)
X ay

We see that this is in exactly the same form as Eq. (4.84). Therefore a compressible
flow stream function can be defined such that
d d
L — 4.97)
Jdy 0x
Again lines of constant ¢ are streamlines of the flow, but the change in ¢ is now
equal to the mass flow, not the volume flow:

dm = p(V - n)dA = dis

2
or m_, = J p(V-n)dA =i, — (4.98)
1

The sign convention on flow direction is the same as in Fig. 4.9. This particular
stream function combines density with velocity and must be substituted into not only
momentum but also the energy and state relations (4.58) and (4.59) with pressure
and temperature as companion variables. Thus the compressible stream function is
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not a great victory, and further assumptions must be made to effect an analytical
solution to a typical problem (see, for instance, Ref. 5, Chap. 7).

Suppose that the important coordinates are r and 6, with v, = 0, and that the density
is constant. Then Eq. (4.82b) reduces to

li( )+li( y=10 (4.99)
rare 7T gt T '

After multiplying through by r, we see that this is the analogous form of Eq. (4.84):

i(%) N i(_%> —0 (4.100)
Jar\ 00 00 ar

By comparison of (4.99) and (4.100) we deduce the form of the incompressible polar
coordinate stream function:
_ta o

= - — 4.101
r 00 vo ar ( )

VU

Once again lines of constant ¢ are streamlines, and the change in ¢ is the volume
fw Q,_,, = ¢, — ;. The sign convention is the same as in Fig. 4.9. This type of
stream function is very useful in analyzing flows with cylinders, vortices, sources, and
sinks (Chap. 8).

As a final example, suppose that the flow is three-dimensional (v,, v.) but with no cir-
cumferential variations, v, = 9/060 = 0 (see Fig. 4.2 for definition of coordinates).
Such a flow is termed axisymmetric, and the flow pattern is the same when viewed
on any meridional plane through the axis of revolution z. For incompressible flow,
Eq. (4.82b) becomes

l—(rv,) + i(vz) =0 (4.102)
ror 0z

This doesn’t seem to work: Can’t we get rid of the one r outside? But when we real-
ize that r and z are independent coordinates, Eq. (4.102) can be rewritten as

0 0
—(v)+—=(v) =0 (4.103)
Jar iz =

By analogy with Eq. (4.84), this has the form

i(—%> + i<%) =0 (4.104)
Jar J9z dz \ or

By comparing (4.103) and (4.104), we deduce the form of an incompressible axisym-
metric stream function (r, z)
19 19
v, = _1 vz=——l/j (4.105)
r oz r or
Here again lines of constant ¢ are streamlines, but there is a factor (277) in the volume
flow: Q,_,, = 2mw({, — ). The sign convention on flow is the same as in Fig. 4.9.



260 Chapter 4 Differential Relations for Fluid Flow

EXAMPLE 4.8

Investigate the stream function in polar coordinates

R2
¢ = U sin B(r = 7) (1)

r

where U and R are constants, a velocity and a length, respectively. Plot the streamlines.
What does the flow represent? Is it a realistic solution to the basic equations?

Solution

The streamlines are lines of constant {, which has units of square meters per second. Note
that ¢/(UR) is dimensionless. Rewrite Eq. (1) in dimensionless form

i_-g( _l) _r 2
Ur _ Smo\m n n= g 2)

Of particular interest is the special line ¢y = 0. From Eq. (1) or (2) this occurs when (a)
6 = 0 or 180° and (b) r = R. Case (a) is the x axis, and case (b) is a circle of radius R, both

of which are plotted in Fig. E4.8.
For any other nonzero value of i it is easiest to pick a value of r and solve for 6:

inf = _WIUR)_

" ¥R — RIr &

In general, there will be two solutions for 6 because of the symmetry about the y axis. For
example, take Y/(UR) = +1.0:

Streamlines converge,
high-velocity region

orR =1
1
r=R +5
0
0
+1 0
_1
2
-1
Singularity
E4.8 at origin
Guess r/R | 3.0 | 2.5 | 2.0 | 1.8 | 1.7 | 1.618
Compute 6 ‘ 22° ‘ 28° ‘ 42° ‘ 53° ‘ 64° ‘ 90°
158° 152° 138° 127° 116°
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Fig. 4.10 Angular velocity and
strain rate of two fluid lines
deforming in the xy plane.
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This line is plotted in Fig. E4.8 and passes over the circle » = R. Be careful, though, because
there is a second curve for {/(UR) = +1.0 for small » < R below the x axis:

Guess r/R | 0.618 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1
Compute ¢ ‘ —90° ‘ —70° ‘ —42° ‘ —28° ‘ —19° ‘ —12° —6°
—110° —138° —152° —161° —168° —174°

This second curve plots as a closed curve inside the circle » = R. There is a singularity of infi-
nite velocity and indeterminate flow direction at the origin. Figure E4.8 shows the full pattern.
The given stream function, Eq. (1), is an exact and classic solution to the momentum
equation (4.38) for frictionless flow. Outside the circle r = R it represents two-dimensional
inviscid flow of a uniform stream past a circular cylinder (Sec. 8.4). Inside the circle it rep-
resents a rather unrealistic trapped circulating motion of what is called a line doublet.

The assumption of zero fluid angular velocity, or irrotationality, is a very useful sim-
plification. Here we show that angular velocity is associated with the curl of the local
velocity vector.

The differential relations for deformation of a fluid element can be derived by
examining Fig. 4.10. Two fluid lines AB and BC, initially perpendicular at time ¢,
move and deform so that at ¢ + dt they have slightly different lengths A’B’ and B'C’

u
—dydt
ay Y

A

dy + @dydt Time: t + dt
dy
IV 4 dp
Line 2 0x
Ao — B ———— ——
Li dx + du dx dt —
Time ¢

d

Y v

y & o Line 1
B dx C




262 Chapter 4 Differential Relations for Fluid Flow

and are slightly off the perpendicular by angles da and df. Such deformation occurs
kinematically because A, B, and C have slightly different velocities when the veloc-
ity field V has spatial gradients. All these differential changes in the motion of A, B,
and C are noted in Fig. 4.10.

We define the angular velocity w, about the z axis as the average rate of counter-
clockwise turning of the two lines:

1(de dB
=—(—-—= 4.106
@ Z(dt dt) ( )

But from Fig. 4.10, da and df are each directly related to velocity derivatives in the
limit of small dr:

_1  (0vlox) dx dt Jv
da = lim = —dt

di—0 dx + (0uldx) dx dt ox
(4.107)

. _y  (0uldy)dydt ou

dB = lim | tan = —

di=0 dy + (0v/dy) dy dt ady

Combining Eqgs. (4.106) and (4.107) gives the desired result:
1[0 d
o, = —<—” - —”> (4.108)
©2\dx  dy

In exactly similar manner we determine the other two rates:

1 ow  Jv 1 ou  ow
w, = _—— W, = — - (4.109)
2 Jdy 0z ) Jz  0x

The vector w = iw, + jw, + kw, is thus one-half the curl of the velocity vector

~ (el V) - (4.110)
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k
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Since the factor of % is annoying, many workers prefer to use a vector twice as large,
called the vorticity:

{=2mw =curl V 4.111)
Many flows have negligible or zero vorticity and are called irrotational:
curl V=0 4.112)

The next section expands on this idea. Such flows can be incompressible or com-
pressible, steady or unsteady.
We may also note that Fig. 4.10 demonstrates the shear strain rate of the element,
which is defined as the rate of closure of the initially perpendicular lines:
da dB v  du

L e v A 4113
o7 T ar ax dy ( )
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When multiplied by viscosity u, this equals the shear stress 7,, in a newtonian fluid,
as discussed earlier in Eqgs. (4.37). Appendix D lists strain rate and vorticity compo-
nents in cylindrical coordinates.

When a flow is both frictionless and irrotational, pleasant things happen. First, the
momentum equation (4.38) reduces to Euler’s equation:

av
P =P8 Vp (4.114)

Second, there is a great simplification in the acceleration term. Recall from Sec. 4.1
that acceleration has two terms:

vV oV
= (VWY 42
5 or ( ) (4.2)

A beautiful vector identity exists for the second term [11]:
(V-V)V=VEVP) + XV (4.115)

where { = curl V from Eq. (4.111) is the fluid vorticity.

Now combine (4.114) and (4.115), divide by p, and rearrange on the left-hand side.
Dot the entire equation into an arbitrary vector displacement dr:
A% 1 1
—+V—V2>+ XV+-Vp—g|-dr=0 4.116
{ o (2 ¢ , VP 8| dr (4.116)

Nothing works right unless we can get rid of the third term. We want
E&XV)-(dr)=0 (4.117)
This will be true under various conditions:

1. Vs zero; trivial, no flow (hydrostatics).

2. T is zero; irrotational flow.

3. dr is perpendicular to £ X V; this is rather specialized and rare.
4. dr is parallel to V; we integrate along a streamline (see Sec. 3.5).

Condition 4 is the common assumption. If we integrate along a streamline in fric-
tionless compressible flow and take, for convenience, g = — gk, Eq. (4.116) reduces
to

A% 1 dp
—-d +d—v2>+—+ dz =10 4.118
Jat r <2 P g ( )

Except for the first term, these are exact differentials. Integrate between any two points
I and 2 along the streamline:

2 2
v dp 1
J—ds—i—f f+§(vg—vf)+g(z2—zl):0 (4.119)
1 1
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Velocity Potential

Orthogonality of Streamlines
and Potential Lines

where ds is the arc length along the streamline. Equation (4.119) is Bernoulli’s equa-
tion for frictionless unsteady flow along a streamline and is identical to Eq. (3.53).
For incompressible steady flow, it reduces to

1
% + > V2 + gz = constant along streamline (4.120)

The constant may vary from streamline to streamline unless the flow is also irrota-
tional (assumption 2). For irrotational flow { = 0, the offending term Eq. (4.117) van-
ishes regardless of the direction of dr, and Eq. (4.120) then holds all over the flow
field with the same constant.

Irrotationality gives rise to a scalar function ¢ similar and complementary to the
stream function . From a theorem in vector analysis [11], a vector with zero curl
must be the gradient of a scalar function

If VxXxV=0 then V=Voé 4.121)

where ¢ = ¢(x, y, z, t) is called the velocity potential function. Knowledge of ¢ thus
immediately gives the velocity components

Jd J Jd
u:,ﬁ vzﬁ w:,fd) (4.122)
0x ady 0z

Lines of constant ¢ are called the potential lines of the flow.

Note that ¢, unlike the stream function, is fully three-dimensional and not limited
to two coordinates. It reduces a velocity problem with three unknowns u, v, and w to
a single unknown potential ¢; many examples are given in Chap. 8. The velocity
potential also simplifies the unsteady Bernoulli equation (4.118) because if ¢ exists,
we obtain

E\Y 9 d
— edr = — (V) - dr = dl -~ 4.123
ot r ot (V) - dr ( 8t) ( )
along any arbitrary direction. Equation (4.118) then becomes a relation between ¢ and p:
d d 1
a—‘f + J FP + 5 [V + gz = const (4.124)

This is the unsteady irrotational Bernoulli equation. It is very important in the analy-
sis of accelerating flow fields (see Refs. 10 and 15), but the only application in this
text will be in Sec. 9.3 for steady flow.

If a flow is both irrotational and described by only two coordinates, i/ and ¢ both exist
and the streamlines and potential lines are everywhere mutually perpendicular except at
a stagnation point. For example, for incompressible flow in the xy plane, we would have

u = W = % (4.125)
ady ox
= _% = % (4.126)

0x ay
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Can you tell by inspection not only that these relations imply orthogonality but also
that ¢ and ¢ satisfy Laplace’s equation?'® A line of constant ¢ would be such that
the change in ¢ is zero:

d ad
d¢=—¢dx+—¢dy=0=udx+vdy (4.127)
ox dy
Solving, we have
d 1
<_y) w1 (4.128)
dx ¢ = const v (dy/dx)d/:const

Equation (4.128) is the mathematical condition that lines of constant ¢ and ¢ be mutu-
ally orthogonal. It may not be true at a stagnation point, where both u# and v are zero,
so that their ratio in Eq. (4.128) is indeterminate.

This is the second time we have discussed Bernoulli’s equation under different cir-
cumstances (the first was in Sec. 3.5). Such reinforcement is useful, since this is prob-
ably the most widely used equation in fluid mechanics. It requires frictionless flow
with no shaft work or heat transfer between sections 1 and 2. The flow may or may
not be irrotational, the latter being an easier condition, allowing a universal Bernoulli
constant.

The only remaining question is this: When is a flow irrotational? In other words,
when does a flow have negligible angular velocity? The exact analysis of fluid rota-
tionality under arbitrary conditions is a topic for advanced study (for example, Ref.
10, Sec. 8.5; Ref. 9, Sec. 5.2; and Ref. 5, Sec. 2.10). We shall simply state those
results here without proof.

A fluid flow that is initially irrotational may become rotational if

1. There are significant viscous forces induced by jets, wakes, or solid boundaries.
In this case Bernoulli’s equation will not be valid in such viscous regions.

There are entropy gradients caused by curved shock waves (see Fig. 4.11D).

3. There are density gradients caused by stratifiation (uneven heating) rather than
by pressure gradients.

4. There are significant noninertial effects such as the earth’s rotation (the Coriolis
acceleration).

In cases 2 to 4, Bernoulli’s equation still holds along a streamline if friction is neg-
ligible. We shall not study cases 3 and 4 in this book. Case 2 will be treated briefly
in Chap. 9 on gas dynamics. Primarily we are concerned with case 1, where rotation
is induced by viscous stresses. This occurs near solid surfaces, where the no-slip con-
dition creates a boundary layer through which the stream velocity drops to zero, and
in jets and wakes, where streams of different velocities meet in a region of high shear.

Internal flows, such as pipes and ducts, are mostly viscous, and the wall layers
grow to meet in the core of the duct. Bernoulli’s equation does not hold in such flows
unless it is modified for viscous losses.

¥Equations (4.125) and (4.126) are called the Cauchy-Riemann equations and are studied in
complex variable theory.
'“This section may be omitted without loss of continuity.
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Fig. 4.11 Typical flow patterns
illustrating viscous regions patched
onto nearly frictionless regions:

(a) low subsonic flow past a body
(U < a); frictionless, irrotational
potential flow outside the boundary
layer (Bernoulli and Laplace equa-
tions valid); (b) supersonic flow
past a body (U > a); frictionless,
rotational flow outside the bound-
ary layer (Bernoulli equation valid,
potential flow invalid).

Viscous regions where Bernoulli's equation fails:

Laminar Turbulent
U boundary boundary
layer layer Separated Wake
/ / flow flow
S > 9/// °
) = =
—
—_ —
Uniform
approach
flow
(irrotational)
(@)
Curved shock wave introduces rotationality
Viscous regions where Bernoulli is invalid:
Laminar Turbulent
boundary boundary Slight
v layer layer separated Wake
/ / - ﬂow
- -
=) ~
—
_ —_—
Uniform
supersonic
approach
(irrotational)
(&)

External flows, such as a body immersed in a stream, are partly viscous and partly
inviscid, the two regions being patched together at the edge of the shear layer or
boundary layer. Two examples are shown in Fig. 4.11. Figure 4.11a shows a low-
speed subsonic flow past a body. The approach stream is irrotational; that is, the curl
of a constant is zero, but viscous stresses create a rotational shear layer beside and
downstream of the body. Generally speaking (see Chap. 7), the shear layer is lami-
nar, or smooth, near the front of the body and turbulent, or disorderly, toward the rear.
A separated, or deadwater, region usually occurs near the trailing edge, followed by
an unsteady turbulent wake extending far downstream. Some sort of laminar or tur-
bulent viscous theory must be applied to these viscous regions; they are then patched
onto the outer flow, which is frictionless and irrotational. If the stream Mach number
is less than about 0.3, we can combine Eq. (4.122) with the incompressible continu-
ity equation (4.73):

V-V=V-(V$)=0

or Vip=0=—5

’p  Fd %P
Gl _
2 T2 T a2 (4.129)
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This is Laplace’s equation in three dimensions, there being no restraint on the num-
ber of coordinates in potential flow. A great deal of Chap. 8 will be concerned with
solving Eq. (4.129) for practical engineering problems; it holds in the entire region
of Fig. 4.11a outside the shear layer.

Figure 4.11b shows a supersonic flow past a round-nosed body. A curved shock
wave generally forms in front, and the flow downstream is rotational due to
entropy gradients (case 2). We can use Euler’s equation (4.114) in this frictionless
region but not potential theory. The shear layers have the same general character
as in Fig. 4.11a except that the separation zone is slight or often absent and the
wake is usually thinner. Theory of separated flow is presently qualitative, but we
can make quantitative estimates of laminar and turbulent boundary layers and
wakes.

EXAMPLE 4.9

If a velocity potential exists for the velocity field of Example 4.5
u=alx*—y> v=—2axy w=0

find it, plot it, and compare with Example 4.7.

Solution

Since w = 0, the curl of V has only one z component, and we must show that it is zero:

) v du 6( 2axy) 5)( 5 2)
w,=————=—"—"(2axy) — —(ax" —a
©ox 9y ox v dy Y

= —2ay + 2ay =0 checks Ans.

(VXV)

The flow is indeed irrotational. A velocity potential exists.
To find ¢(x, y), set

u:%:cvf—ay2 (1)
ax
v= % = —2axy 2)
dy
Integrate (1)
3
=T — an? + ) 3)

Differentiate (3) and compare with (2)

¢

T = 24wy + () = ~2axy @
y

Therefore f' = 0, or f = constant. The velocity potential is

3
¢=ax77axy2+c Ans.
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4.10 Some Illustrative
Incompressible Viscous Flows

Couette Flow between a Fixed
and a Moving Plate

=)
E4.9 P=20 a0 o —a

Letting C = 0, we can plot the ¢ lines in the same fashion as in Example 4.7. The result
is shown in Fig. E4.9 (no arrows on ¢). For this particular problem, the ¢ lines form the
same pattern as the ¢ lines of Example 4.7 (which are shown here as dashed lines) but are
displaced 30°. The ¢ and ¢ lines are everywhere perpendicular except at the origin, a stag-
nation point, where they are 30° apart. We expected trouble at the stagnation point, and
there is no general rule for determining the behavior of the lines at that point.

Inviscid flows do not satisfy the no-slip condition. They “slip” at the wall but do not
flow through the wall. To look at fully viscous no-slip conditions, we must attack the
complete Navier-Stokes equation (4.74), and the result is usually not at all irrotational,
nor does a velocity potential exist. We look here at three cases: (1) flow between par-
allel plates due to a moving upper wall, (2) flow between parallel plates due to pres-
sure gradient, and (3) flow between concentric cylinders when the inner one rotates.
Other cases will be given as problem assignments or considered in Chap. 6. Exten-
sive solutions for viscous flows are discussed in Refs. 4 and 5. All flows in this sec-
tion are viscous and rotational.

Consider two-dimensional incompressible plane (d/dz = 0) viscous flow between par-
allel plates a distance 2h apart, as shown in Fig. 4.12. We assume that the plates are
very wide and very long, so that the flow is essentially axial, # 7 0 but v=w = 0.
The present case is Fig. 4.12a, where the upper plate moves at velocity V but there
is no pressure gradient. Neglect gravity effects. We learn from the continuity equa-
tion (4.73) that

Ju Jdv  Ow du

—+—+—=0=—+0+0 or u = u(y) only

dx dy 0z 0x
Thus there is a single nonzero axial velocity component that varies only across the
channel. The flow is said to be fully developed (far downstream of the entrance).



Fig. 4.12 Incompressible viscous
flow between parallel plates: (a) no
pressure gradient, upper plate mov-
ing; (b) pressure gradient dp/dx
with both plates fixed.

Flow Due to Pressure Gradient
between Two Fixed Plates
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—_—y Fixed

y=+h

. e —
=" u(y)
y=-h
Fixed Fixed

(a) (b)

Substitute # = u(y) into the x component of the Navier-Stokes momentum equation
(4.74) for two-dimensional (x, y) flow:

ou du ap u  9u
plu—tv—)=—""+pgtu -5+
X 0x

ox  dy E) ay*
d’u
or pO+0)=0+0+pu O+F (4.130)
Y
Most of the terms drop out, and the momentum equation reduces to simply
d’u
d_yz =0 or u=Cy+ G,

The two constants are found by applying the no-slip condition at the upper and lower
plates:

Aty = +h u=V==Cch+C,
Aty = —h u=0=C(—h + G

C . and C _Vv
or 1T o 175

Therefore the solution for this case (a), flow between plates with a moving upper
wall, is

1%
+—  —h=y=+h (4.131)

TR

This is Couette fiw due to a moving wall: a linear velocity profile with no slip at
each wall, as anticipated and sketched in Fig. 4.12a. Note that the origin has been
placed in the center of the channel for convenience in case (b) which follows.

What we have just presented is a rigorous derivation of the more informally dis-
cussed flow of Fig. 1.8 (where y and /& were defined differently).

Case (b) is sketched in Fig. 4.12b. Both plates are fixed (V = 0), but the pressure
varies in the x direction. If v = w = 0, the continuity equation leads to the same
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conclusion as case (a)—namely, that u = u(y) only. The x-momentum equation
(4.130) changes only because the pressure is variable:
@ _ % (4.132)

Mdyz ox '

Also, since v = w = 0 and gravity is neglected, the y- and z-momentum equations lead to

ap ap
— =0 and —=0 or p = p(x) only
dy 0z
Thus the pressure gradient in Eq. (4.132) is the total and only gradient:
du dp
,LLd—yz = E = const < 0 (4.133)

Why did we add the fact that dp/dx is constant? Recall a useful conclusion from the
theory of separation of variables: If two quantities are equal and one varies only with
y and the other varies only with x, then they must both equal the same constant. Oth-
erwise they would not be independent of each other.

Why did we state that the constant is negative? Physically, the pressure must
decrease in the flow direction in order to drive the flow against resisting wall shear
stress. Thus the velocity profile u(y) must have negative curvature everywhere, as
anticipated and sketched in Fig. 4.12b.

The solution to Eq. (4.133) is accomplished by double integration:

1 dpy*
=——=+Cy+C
u wdx 2 1y 2
The constants are found from the no-slip condition at each wall:
dp n*
Aty=*h: u=0 or C =0 ad C=-22L
dx 2
Thus the solution to case (b), flow in a channel due to pressure gradient, is
dp n? ( y2>
=——|1-7= 4.134
“T T e (4.134)

The flow forms a Poiseuille parabola of constant negative curvature. The maximum
velocity occurs at the centerline y = 0:
dp n*
Unax = - (4.135)
dx 2

Other (laminar) flow parameters are computed in the following example.

EXAMPLE 4.10

For case (b) in Fig. 4.12b, flow between parallel plates due to the pressure gradient, com-
pute (a) the wall shear stress, (b) the stream function, (c¢) the vorticity, (d) the velocity poten-
tial, and (e) the average velocity.
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Solution

All parameters can be computed from the basic solution, Eq. (4.134), by mathematical
manipulation.

Part (a) The wall shear follows from the definition of a newtonian fluid, Eq. (4.37):

du dv ad dp\( W 2
W 7-xywall = M T + = = M N5 1= 72
dy  Ix/)ly=xy Ay dx)\2un h

dp — 2l’“’tmax
= =
dx h

y==h

I
I+
|
&
|

Ans. (a)

The wall shear has the same magnitude at each wall, but by our sign convention of Fig. 4.3,
the upper wall has negative shear stress.

Part (b) Since the flow is plane, steady, and incompressible, a stream function exists:

_ W (_L) _ W
u= = Umax| 1 2 v = =0
dy h ax

Integrating and setting ¢y = 0 at the centerline for convenience, we obtain

3
l/l = umax<y - #) Ans. (b)

At the walls, y = =h and ¢ = *2u,,,,//3, respectively.

Part (c¢) In plane flow, there is only a single nonzero vorticity component:

v du 2u
z = W), ==—======
=V = ™ # Y

Ans. (c)

The vorticity is highest at the wall and is positive (counterclockwise) in the upper half and
negative (clockwise) in the lower half of the fluid. Viscous flows are typically full of vor-
ticity and are not at all irrotational.

Part (d) From part (c), the vorticity is finite. Therefore the flow is not irrotational, and the velocity
potential does not exist. Ans. (d)

Part (e) The average velocity is defined as V,, = Q/A, where Q = [u dA over the cross section. For
our particular distribution u(y) from Eq. (4.134), we obtain

1 I y? 2
Vow=—|udA = —— 1—==)bdy == Ans.
av AJ” b(Zh) Jh umax( h2> y 3 umax ns (6)

In plane Poiseuille flow between parallel plates, the average velocity is two-thirds of the
maximum (or centerline) value. This result could also have been obtained from the stream
function derived in part (b). From Eq. (4.95),

2umaxh

2Umaxh 4 .
Ochannel = d’upper = Whomer = 3 I 3 = g Upaxh per unit width

whence V,, = Q/A,—1 = (Qumaxh/3)/(2h) = 2up,,,/3, the same result.
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Fully Developed Laminar
Pipe Flow

This example illustrates a statement made earlier: Knowledge of the velocity vector V
[as in Eq. (4.134)] is essentially the solution to a fluid mechanics problem, since all other
flow properties can then be calculated.

Perhaps the most useful exact solution of the Navier-Stokes equation is for incom-
pressible flow in a straight circular pipe of radius R, first studied experimentally by G.
Hagen in 1839 and J. L. Poiseuille in 1840. By fully developed we mean that the region
studied is far enough from the entrance that the flow is purely axial, v, # 0, while v,
and vy are zero. We neglect gravity and also assume axial symmetry—that is, 9/90 = 0.
The equation of continuity in cylindrical coordinates, Eq. (4.12b), reduces to

9
a—Z(vZ) =0 or v, = v,(r) only

The flow proceeds straight down the pipe without radial motion. The r-momentum
equation in cylindrical coordinates, Eq. (D.5), simplifies to dp/dr = 0, or p = p(z)
only. The z-momentum equation in cylindrical coordinates, Eq. (D.7), reduces to

v, dp 5 dp nd < dvz>
v—=—"+uVuv, = —F+——| r—
e d M dz = rdr\ dr

The convective acceleration term on the left vanishes because of the previously given

continuity equation. Thus the momentum equation may be rearranged as follows:

d( dv, d
ﬂ—<ri> =L _ onst <0 (4.136)
dr dz
This is exactly the situation that occurred for flow between flat plates in Eq. (4.132).
Again the “separation” constant is negative, and pipe flow will look much like the
plate flow in Fig. 4.12b.
Equation (4.136) is linear and may be integrated twice, with the result
D)+ C
v,=—— n(r
© T & 4p 1 2
where C; and C, are constants. The boundary conditions are no slip at the wall and
finite velocity at the centerline:
. dp R?
Noslipatr =R: v,=0=——+ C;In(R) + G,
dz 4u

Finite velocity at r = 0: v, = finite = 0 + C, In(0) + C,
To avoid a logarithmic singularity, the centerline condition requires that C; = 0. Then,

from no slip, C, = (—dp/dz)(R2/4,u). The final, and famous, solution for fully devel-
oped Hagen-Poiseuille fiw is

_(_dp\1 > >
vz< dz>4M(R r) (4.137)
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The velocity profile is a paraboloid with a maximum at the centerline. Just as in Exam-
ple 4.10, knowledge of the velocity distribution enables other parameters to be
calculated:

dp\ R*
Vinax = v:r = 0) = =7 i

1 1 (" rz) Vine ( dp)R2
Ve = — | 0.dA = —=5 | Vil 15 27 dr = 22 = [ —=5 | —
we Ty J =T R L “‘a"( )T T dz) 8p

W_R“( d_P> _ TR

R 2
Q = Jvsz = J Vmax<1_%)2ﬂ'r dr = 7TR2Vav =
0

g Bu dz 8u L
. 4uV,. R{ dp\ RA
Tyl = 1] S =“—%=—<——p)=——p (4.138)
or|,—g R 2\ dz 2 L

Note that we have substituted the equality (—dp/dz) = Ap/L, where Ap is the pres-
sure drop along the entire length L of the pipe.

These formulas are valid as long as the flow is laminar—that is, when the dimen-
sionless Reynolds number of the flow, Rep = pV,o(2R)/u, is less than about 2100.
Note also that the formulas do not depend on density, the reason being that the con-
vective acceleration of this flow is zero.

EXAMPLE 4.11

SAE 10W oil at 20°C flws at 1.1 m */h through a horizontal pipe with d = 2 cm and L =
12 m. Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop, and
(d) the power required.

Solution

* Assumptions: Laminar, steady, Hagen-Poiseuille pipe flow.

e Approach: The formulas of Eqs. (4.138) are appropriate for this problem. Note that
R =0.01 m.

e Property values: From Table A.3 for SAE 10W oil, p =870 kg/m> and u =
0.104 kg/(m-s).

e Solution steps: The average velocity follows easily from the flow rate and the pipe
area:

yo o~ © _ (11/3600) m¥s

m
= = 09732 Ans.
v T TR m0.01m) s ns. (a)

We had to convert Q to m*/s. The (diameter) Reynolds number follows from the average
velocity:

PVaed _ (870 kg/m)(0.973 m/s)(0.02 m)

Red =
0.104 kg/(m-s)

=163 Ans. (b)
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This is less than the “transition” value of 2100; so the flow is indeed laminar, and the
formulas are valid. The pressure drop is computed from the third of Eqgs. (4.138):

0= 1.1 m*  @R'Ap (0.01m)*Ap

=— I Ive for Ap = 97,100Pa  Ans.
3600 s 8wl  8(0.104 kg/(ms))(12m) o or P 2 Ans. (c)

When using SI units, the answer returns in pascals; no conversion factors are needed.
Finally, the power required is the product of flow rate and pressure drop:

L1 4 2 N-m
Power = QAp = 3600 m/s |(97,100 N/m~) = 29.7T =297W Ans. (d)

e Comments: Pipe flow problems are straightforward algebraic exercises if the data are
compatible. Note again that SI units can be used in the formulas without conversion

factors.
Flow between Long Concentric Consider a fluid of constant (p, p) between two concentric cylinders, as in Fig. 4.13.
Cylinders There is no axial motion or end effect v, = 9/dz = 0. Let the inner cylinder rotate at

angular velocity ();. Let the outer cylinder be fixed. There is circular symmetry, so
the velocity does not vary with 6 and varies only with r.
The continuity equation for this problem is Eq. (4.12b) with v, = O:

) or rv. = const
Note that vy does not vary with 0. Since v, = 0 at both the inner and outer cylinders,

it follows that v, = 0 everywhere and the motion can only be purely circumferential,
Vg = vy(r). The f-momentum equation (D.6) becomes

X 19
p(V-V)vg-i-M:———p-i-pgg-i-,u, Vzvg—v—g
r r 060 r

Fluid: p, u

Fig. 4.13 Coordinate system for
incompressible viscous flow
between a fixed outer cylinder and
a steadily rotating inner cylinder.




Instability of Rotating Inner"s
Cylinder Flow
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For the conditions of the present problem, all terms are zero except the last. There-
fore the basic differential equation for flow between rotating cylinders is

1d( dv v,
Vi, = ?E(QT:) - % (4.139)

This is a linear second-order ordinary differential equation with the solution
G
Yy = Clr + 7

The constants are found by the no-slip condition at the inner and outer cylinders:

G
Outer, at r = r,: v,=0=Cyr, +—
o
C
Inner, at r = r;: vy = ;= Cyr; + 72
i
The final solution for the velocity distribution is
L . r,/r — rlr,
Rotating inner cylinder: vy = Qiri—————— (4.140)

rolr; — rilr,

The velocity profile closely resembles the sketch in Fig. 4.13. Variations of this case,
such as a rotating outer cylinder, are given in the problem assignments.

The classic Couette fiw solution'® of Eq. (4.140) describes a physically satisfying
concave, two-dimensional, laminar flow velocity profile as in Fig. 4.13. The solution
is mathematically exact for an incompressible fluid. However, it becomes unstable at
a relatively low rate of rotation of the inner cylinder, as shown in 1923 in a classic
paper by G. L. Taylor [17]. At a critical value of what is now called the dimension-
less Taylor number, denoted Ta,

ri(r, — 1)’}

Tag = — =~ 1700 (4.141)
the plane flow of Fig. 4.13 vanishes and is replaced by a laminar three-dimensional
flow pattern consisting of rows of nearly square alternating toroidal vortices. An
experimental demonstration of toroidal “Taylor vortices” is shown in Fig. 4.14a,
measured at Ta = 1.16 Ta,; by Koschmieder [18]. At higher Taylor numbers, the vor-
tices also develop a circumferential periodicity but are still laminar, as illustrated in
Fig. 4.14b. At still higher Ta, turbulence ensues. This interesting instability reminds
us that the Navier-Stokes equations, being nonlinear, do admit to multiple (nonunique)
laminar solutions in addition to the usual instabilities associated with turbulence and
chaotic dynamic systems.

>This section may be omitted without loss of continuity.
'*Named after M. Couette, whose pioneering paper in 1890 established rotating cylinders as a
method, still used today, for measuring the viscosity of fluids.
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Fig. 4.14 Experimental verification
of the instability of flow between
a fixed outer and a rotating inner
cylinder. (a) Toroidal Taylor
vortices exist at 1.16 times the
critical speed; (b) at 8.5 times the
critical speed, the vortices are
doubly periodic. (Courtesy of
Cambridge University Press&:L.
Koschmieder, Turbulent Taylor
Vortex Flow, Journal of Fluid
Mechanics, vol. 93. pt. 3, 1979,
pp. 515527. ) This instability does
not occur if only the outer cylinder
rotates.

Summary

(a)

This chapter complements Chap. 3 by using an infinitesimal control volume to derive
the basic partial differential equations of mass, momentum, and energy for a fluid.
These equations, together with thermodynamic state relations for the fluid and appro-
priate boundary conditions, in principle can be solved for the complete flow field in
any given fluid mechanics problem. Except for Chap. 9, in most of the problems to
be studied here an incompressible fluid with constant viscosity is assumed.

In addition to deriving the basic equations of mass, momentum, and energy, this
chapter introduced some supplementary ideas—the stream function, vorticity, irrota-
tionality, and the velocity potential—which will be useful in coming chapters, especially
Chap. 8. Temperature and density variations will be neglected except in Chap. 9, where
compressibility is studied.
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This chapter ended by discussing a few classical solutions for laminar viscous flows
(Couette flow due to moving walls, Poiseuille duct flow due to pressure gradient, and
flow between rotating cylinders). Whole books [4, 5, 9-11, 15] discuss classical
approaches to fluid mechanics, and other texts [6, 12—14] extend these studies to the
realm of continuum mechanics. This does not mean that all problems can be solved
analytically. The new field of computational fluid dynamics [1] shows great promise
of achieving approximate solutions to a wide variety of flow problems. In addition,
when the geometry and boundary conditions are truly complex, experimentation
(Chap. 5) is a preferred alternative.

Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk.
Problems labeled with an EES icon will benefit from the use
of the Engineering Equation Solver (EES), while problems with a
computer icon may require the use of a computer. The stan-
dard end-of-chapter problems P4.1 to P4.98 (categorized in the
problem list here) are followed by word problems W4.1 to W4.10,
fundamentals of engineering exam problems FE4.1 to FE4.6, and
comprehensive problems C4.1 and C4.2.

Problem Distribution

Section Topic Problems
4.1 The acceleration of a fluid P4.1-P4.8
4.2 The continuity equation P4.9-P4.25
43 Linear momentum: Navier-Stokes P4.26-P4.38
44 Angular momentum: couple stresses P4.39
4.5 The differential energy equation P4.40-P4.41
4.6 Boundary conditions P4.42-P4.46
4.7 Stream function P4.47-P4.55
4.8 and 4.9 Velocity potential, vorticity P4.56-P4.67
4.7 and 4.9 Stream function and velocity potential P4.68-P4.78
4.10 Incompressible viscous flows P4.79-P4.96
4.10 Slip flows P4.97-P4.98

The acceleration of a flid

P4.1  An idealized velocity field is given by the formula
V = dmi — 2t%yj + dazk

Is this flow field steady or unsteady? Is it two- or three-
dimensional? At the point (x, y, z) = (—1, 1, 0), compute
(a) the acceleration vector and (b) any unit vector normal
to the acceleration.

P4.2  Flow through the converging nozzle in Fig. P4.2 can
be approximated by the one-dimensional velocity distri-
bution

2x
u%VO(l—Ff) v=0 w=0

(a) Find a general expression for the fluid acceleration
in the nozzle. (b) For the specific case Vy = 10 ft/s and
L = 6 in, compute the acceleration, in g’s, at the entrance
and at the exit.

P42 x=0

P4.3 A two-dimensional velocity field is given by
V=2 — ¥+ 0i — Qxy + y)j

in arbitrary units. At (x, y) = (1, 2), compute (a) the
accelerations a, and a,, (b) the velocity component
in the direction 6 = 40°, (c¢) the direction of maxi-
mum velocity, and (d) the direction of maximum
acceleration.

P4.4 A simple flow model for a two-dimensional converging
nozzle is the distribution

u=UO<1+£) v=*UOX w=0
L L

(a) Sketch a few streamlines in the region 0 < x/L <1 and
0 < y/L < 1, using the method of Section 1.11. (b) Find
expressions for the horizontal and vertical accelerations.
(c) Where is the largest resultant acceleration and its
numerical value?

P4.5  The velocity field near a stagnation point (see Example
1.12) may be written in the form

_ Uox
L

_Uoy

u v = 3 U, and L are constants
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P4.6

P4.7

P4.8

(a) Show that the acceleration vector is purely radial.
(b) For the particular case L = 1.5 m, if the acceleration
at (x,y) = (1 m, 1 m)is 25 m/s?, what is the value of Uy?
An incompressible plane flow has the velocity compo-
nents u = 2y, v = 8x, w = 0. (@) Find the acceleration
components. (b) Determine if the vector acceleration is
radial. (¢) Which two streamlines of this flow are
straight lines?

Consider a sphere of radius R immersed in a uniform
stream U,, as shown in Fig. P4.7. According to the
theory of Chap. 8, the fluid velocity along streamline AB
is given by

R3
V= ui= Uo(l + —3)i
X

Find (a) the position of maximum fluid acceleration
along AB and (b) the time required for a fluid particle
to travel from A to B.

> Uo -
A B [Sphere
- : - X
P4.7

When a valve is opened, fluid flows in the expansion
duct of Fig. P4.8 according to the approximation

V= iU(l — i) tanhE
2L L

Find (a) the fluid acceleration at (x, t) = (L, L/U) and
(b) the time for which the fluid acceleration at x = L is
zero. Why does the fluid acceleration become negative
after condition (b)?

P4.8

The continuity equation

P4.9

An idealized incompressible flow has the proposed
three-dimensional velocity distribution

P4.10

P4.11

P4.12

P4.13

V =4y’ + f0)j — 2k

Find the appropriate form of the function f(y) that sat-
isfies the continuity relation.

Consider the simple incompressible plane flow pattern u
= U,v=1V,and w = 0, where U and V are constants.
(a) Convert these velocities into polar coordinate com-
ponents, v, and vy. Hint: Make a sketch of the velocity
components. (b) Determine whether these new compo-
nents satisfy the continuity equation in polar coordinates.
Derive Eq. (4.12b) for cylindrical coordinates by con-
sidering the flux of an incompressible fluid in and out
of the elemental control volume in Fig. 4.2.

Spherical polar coordinates (r, 6, ¢) are defined in
Fig. P4.12. The cartesian transformations are

x = rsin 6 cos ¢
= rsin 6 sin ¢
z=rcos0

Do not show that the cartesian incompressible continu-
ity relation [Eq. (4.12a)] can be transformed to the
spherical polar form

1

o) + —— Ly sin ) + —— 2 (u) = 0
. —_— Sin ——— =
Port T singog rsin @ d¢ Ye

What is the most general form of v, when the flow is
purely radial—that is, v, and vy, are zero?

r = constant

P4.12

For an incompressible plane flow in polar coordinates,
we are given

v, = rcosf + r*sinf

Find the appropriate form of circumferential velocity for
which continuity is satisfied.



P4.14

P4.15

P4.16

P4.17

P4.18

For incompressible polar coordinate flow, what is the
most general form of a purely circulatory motion, v, =
vy(r, 6, t) and v, = 0, that satisfies continuity?

What is the most general form of a purely radial polar
coordinate incompressible flow pattern, v, = v(r, 0, 1)
and v, = 0, that satisfies continuity?

Consider the plane polar coordinate velocity distribution

v, = — Vg = —

v, =0
r r

where C and K are constants. (a) Determine if the equa-
tion of continuity is satisfied. (b) By sketching some
velocity vector directions, plot a single streamline for
C = K. What might this flow field simulate?

An excellent approximation for the two-dimensional
incompressible laminar boundary layer on the flat sur-
face in Fig. P4.17 is

3 4
Y y Y
u = U<2g*2§+g) fOI"yS(S

where 8 = Cx'?, C = const

(a) Assuming a no-slip condition at the wall, find an
expression for the velocity component v(x, y) for y = 6.
(b) Then find the maximum value of v at the station
x =1 m, for the particular case of airflow, when
U=3m/sand 6 = 1.1 cm.

Layer thickness 6 (x)

U -
y - - = U = constant
-
-
-
v
’
// —>/ u(x, y) >/ u(x, y)
7/

0 X
P4.17

A piston compresses gas in a cylinder by moving at con-
stant speed V, as in Fig. P4.18. Let the gas density and

V = constant u(x, )
— — PO
L .
P4.18 x=0 x=L(1)

P4.19

P4.20

P4.21

P4.22

P4.23

P4.24
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length at r = 0 be py and L, respectively. Let the gas
velocity vary linearly from u = V at the piston face to
u =0 atx = L. If the gas density varies only with time,
find an expression for p(7).

An incompressible flow field has the cylindrical com-
ponents vy = Cr, v, = K(R2 — rz), v, = 0, where C and
K are constants and r = R, z = L. Does this flow sat-
isfy continuity? What might it represent physically?

A two-dimensional incompressible velocity field has
u=K(1—e ), forx =Land 0 =y <o What is
the most general form of v(x, y) for which continuity is
satisfied and v = vy at y = 0? What are the proper
dimensions for constants K and a?

Air flows under steady, approximately one-dimensional
conditions through the conical nozzle in Fig. P4.21. If
the speed of sound is approximately 340 m/s, what is
the minimum nozzle-diameter ratio D, /D, for which we
can safely neglect compressibility effects if Vy = (a)
10 m/s and (b) 30 m/s?

P4.21 D,

In an axisymmetric flow, nothing varies with 6, the only
nonzero velocities are v, and v, (see Fig. 4.2). If the flow
is steady and incompressible and v, = Bz, where B is
constant, find the most general form of v, which satis-
fies continuity.

A tank volume V' contains gas at conditions (pg, po,
To). At time ¢t = 0 it is punctured by a small hole of
area A. According to the theory of Chap. 9, the mass
flow out of such a hole is approximately proportional
to A and to the tank pressure. If the tank temperature
is assumed constant and the gas is ideal, find an
expression for the variation of density within the
tank.

For laminar flow between parallel plates (see
Fig. 4.12b), the flow is two-dimensional (v # 0) if the
walls are porous. A special case solution is
u=(A— B)h— yz), where A and B are constants.
(a) Find a general formula for velocity v if v = 0 at
y = 0. (b) What is the value of the constant B if v =
v, aty = +h?
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P4.25

An incompressible flow in polar coordinates is given by

b
v, = Kcosf| 1 ——
’

b
vy = —Ksin 0(1 + P)

Does this field satisty continuity? For consistency, what
should the dimensions of constants K and b be? Sketch
the surface where v, = 0 and interpret.

Linear momentum: Navier-Stokes

*P4.26

P4.27

P4.28

P4.29

Curvilinear, or streamline, coordinates are defined in Fig.
P4.26, where n is normal to the streamline in the plane of
the radius of curvature R. Euler’s frictionless momentum
equation (4.36) in streamline coordinates becomes

av. o av 1ap
V=g (1)
at as p os
0 19
Ve m o= hg, @
Jt R p on

Show that the integral of Eq. (1) with respect to s is none
other than our old friend Bernoulli’s equation (3.54).

P4.26
A frictionless, incompressible steady flow field is given by
V = 2xyi — VY

in arbitrary units. Let the density be p, = constant and
neglect gravity. Find an expression for the pressure gra-
dient in the x direction.

Consider the incompressible flow field of Prob. P4.6, with
velocity components u = 2y, v = 8x, w = 0. Neglect grav-
ity and assume constant viscosity. (@) Determine whether
this flow satisfies the Navier-Stokes equations. (b) If so,
find the pressure distribution p(x, y) if the pressure at the
origin is p,,.

Consider a steady, two-dimensional, incompressible
flow of a newtonian fluid in which the velocity field is
known: u = —2xy, v=y> — x*, w = 0. (a) Does this
flow satisfy conservation of mass? (b) Find the pressure

P4.30

P4.31

P4.32

P4.33

field, p(x, y) if the pressure at the point (x = 0, y = 0)
is equal to p,.

For the velocity distribution of Prob. P4.4, determine if
(a) the equation of continuity and (b) the Navier-Stokes
equation are satisfied. (¢) If the latter is true, find the
pressure distribution p(x, y) when the pressure at the ori-
gin equals p,,.

According to potential theory (Chap. 8) for the flow
approaching a rounded two-dimensional body, as in
Fig. P4.31, the velocity approaching the stagnation point
is given by u = U(1 — a*/x*), where a is the nose radius
and U is the velocity far upstream. Compute the value
and position of the maximum viscous normal stress
along this streamline.

Stagnation
point
(u=0)

P4.31

Is this also the position of maximum fluid deceleration?
Evaluate the maximum viscous normal stress if the fluid
is SAE 30 oil at 20°C, with U =2 m/s and a = 6 cm.
The answer to Prob. P4.14 is vy = f(r) only. Do not
reveal this to your friends if they are still working on
Prob. P4.14. Show that this flow field is an exact solu-
tion to the Navier-Stokes equations (4.38) for only two
special cases of the function f(r). Neglect gravity. Inter-
pret these two cases physically.

Consider incompressible flow at a volume rate Q toward
a drain at the vertex of a 45° wedge of width b, as in Fig.
P4.33. Neglect gravity and friction and assume purely
radial inflow. (@) Find an expression for v(r). (b) Show
that the viscous term in the 7-momentum equation is zero.
(c) Find the pressure distribution p(r) if p = p, at r = R.

0 =rml4

/

Q

Drain

P4.33



P4.34

P4.35

P4.36

*P4.37

A proposed three-dimensional incompressible flow field
has the following vector form:

V = Kx + Kyj — 2Kzk

(a) Determine if this field is a valid solution to conti-
nuity and Navier-Stokes. (b) If g = —gk, find the pres-
sure field p(x, y, z). (¢) Is the flow irrotational?

From the Navier-Stokes equations for incompressible
flow in polar coordinates (App. D for cylindrical coor-
dinates), find the most general case of purely circulat-
ing motion vy(r), v, = v, = 0, for flow with no slip
between two fixed concentric cylinders, as in Fig. P4.35.

P4.35

A constant-thickness film of viscous liquid flows in
laminar motion down a plate inclined at angle 6, as in
Fig. P4.36. The velocity profile is

u=Cy2h—y) v=w=0

Find the constant C in terms of the specific weight and
viscosity and the angle 0. Find the volume flux Q per
unit width in terms of these parameters.

y

P4.36

A viscous liquid of constant p and w falls due to grav-
ity between two plates a distance 2k apart, as in
Fig. P4.37. The flow is fully developed, with a single
velocity component w = w(x). There are no applied

P4.38
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pressure gradients, only gravity. Solve the Navier-Stokes
equation for the velocity profile between the plates.

l x

P4.37 L] L]

Show that the incompressible flow distribution, in cylin-
drical coordinates,

v, =0 ve = Cr" v.=0

where C is a constant, (a) satisfies the Navier-Stokes
equation for only two values of n. Neglect gravity. (b)
Knowing that p = p(r) only, find the pressure distribu-
tion for each case, assuming that the pressure at r = R
is po. What might these two cases represent?

Angular momentum: couple stresses

P4.39

Reconsider the angular momentum balance of Fig. 4.5 by
adding a concentrated body couple C, about the z axis [6].
Determine a relation between the body couple and shear
stress for equilibrium. What are the proper dimensions for
C.? (Body couples are important in continuous media
with microstructure, such as granular materials.)

The differential energy equation

P4.40

P4.41

For pressure-driven laminar flow between parallel plates
(see Fig. 4.12b), the velocity components are u = U(1-
y2/h2), v =0, and w = 0, where U is the centerline
velocity. In the spirit of Ex. 4.6, find the temperature
distribution 7(y) for a constant wall temperature T,.
As mentioned in Sec. 4.10, the velocity profile for lam-
inar flow between two plates, as in Fig. P4.41, is

TW
y=h
y ———)uy) T(y)
y=0 T X
T,
P4.41
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_ 4umaxy (h _ Y)

W=

If the wall temperature is 7,, at both walls, use the

incompressible flow energy equation (4.75) to solve for

the temperature distribution 7(y) between the walls for
steady flow.

v=w=0

Boundary conditions

P4.42

P4.43

P4.44

P4.45

P4.46

Suppose we wish to analyze the rotating, partly full
cylinder of Fig. 2.23 as a spin-up problem, starting from
rest and continuing until solid-body rotation is achieved.
What are the appropriate boundary and initial conditions
for this problem?

For the draining liquid film of Fig. P4.36, what are the
appropriate boundary conditions (a) at the bottom y = 0
and (b) at the surface y = h?

Suppose that we wish to analyze the sudden pipe expan-
sion flow of Fig. P3.59, using the full continuity and
Navier-Stokes equations. What are the proper boundary
conditions to handle this problem?

For the sluice gate problem of Example 3.10, list all the
boundary conditions needed to solve this flow exactly
by, say, Computational Fluid Dynamics.

Fluid from a large reservoir at temperature 7, flows into
a circular pipe of radius R. The pipe walls are wound
with an electric resistance coil that delivers heat to the
fluid at a rate g,, (energy per unit wall area). If we wish
to analyze this problem by using the full continuity,
Navier-Stokes, and energy equations, what are the
proper boundary conditions for the analysis?

Stream function

P4.47

P4.48

P4.49

P4.50

A two-dimensional incompressible flow is given by the
velocity field V = 3yi + 2xj, in arbitrary units. Does
this flow satisfy continuity? If so, find the stream func-
tion Y(x, y) and plot a few streamlines, with arrows.
Consider the following two-dimensional incompressible
flow, which clearly satisfies continuity:

u = Uy = constant, v = V,; = constant

Find the stream function ¢s(r, 0) of this flow using polar
coordinates.

Investigate the stream function ¢ = K(x* — %), K=
constant. Plot the streamlines in the full xy plane, find
any stagnation points, and interpret what the flow could
represent.

In 1851, George Stokes (of Navier-Stokes fame) solved
the problem of steady incompressible low-Reynolds-
number flow past a sphere, using spherical polar coor-
dinates (r, 0) [Ref. 5, page 168]. In these coordinates,
the equation of continuity is

P4.51

P4.52

P4.53

P4.54

P4.55

B B
5(r%,sine) + £(rv9 sinf) = 0

(a) Does a stream function exist for these coordinates?
(b) If so, find its form.

The velocity profile for pressure-driven laminar flow
between parallel plates (see Fig. 4.12b) has the form u =
c(* - yz), where C is a constant. (a) Determine if a
stream function exists. (b) If so, find a formula for the
stream function.

A two-dimensional, incompressible, frictionless fluid is
guided by wedge-shaped walls into a small slot at the
origin, as in Fig. P4.52. The width into the paper is b,

and the volume flow rate is Q. At any given distance r
from the slot, the flow is radial inward, with constant
velocity. Find an expression for the polar coordinate
stream function of this flow.

For the fully developed laminar pipe flow solution of
Eq. (4.137), find the axisymmetric stream function
Y (r, z). Use this result to determine the average veloc-
ity V = Q/A in the pipe as a ratio of u,.

An incompressible stream function is defined by

U
Yoy =13 Bx%y = y)

where U and L are (positive) constants. Where in this
chapter are the streamlines of this flow plotted? Use this
stream function to find the volume flow Q passing
through the rectangular surface whose corners are
defined by (x, y, z) = (2L, 0, 0), (2L, 0, b), (0, L, b), and
(0, L, 0). Show the direction of Q.

For the incompressible plane flow of Prob. P4.6, with
velocity components u = 2y, v = 8x, w = 0, determine
(a) if a stream function exists. (b) If so, determine the
form of the stream function, and (c¢) plot a few repre-
sentative streamlines.



Velocity potential, vorticity

P4.56

P4.57

P4.58

P4.59

P4.60

P4.61

Investigate the velocity potential ¢ = Kxy, K = con-
stant. Sketch the potential lines in the full xy plane, find
any stagnation points, and sketch in by eye the orthog-
onal streamlines. What could the flow represent?

A two-dimensional incompressible flow field is defined
by the velocity components

u= ZV(ﬁ — X) v= —ZVX
L L L

where V and L are constants. If they exist, find the
stream function and velocity potential.

Show that the incompressible velocity potential in plane
polar coordinates ¢(r, 0) is such that

o 1 oo
, = _14

= v
Tar Y a0

Finally show that ¢ as defined here satisfies Laplace’s
equation in polar coordinates for incompressible flow.
Consider the two-dimensional incompressible velocity
potential ¢ = xy + x> — y% (a) Is it true that V¢ =
0, and, if so, what does this mean? (b) If it exists, find
the stream function ¢ (x, y) of this flow. (¢) Find the
equation of the streamline that passes through (x, y)
=2, 1).

Liquid drains from a small hole in a tank, as shown in
Fig. P4.60, such that the velocity field set up is given
by v, = 0, v, = 0, vy = KR*/r, where z = H is the depth
of the water far from the hole. Is this flow pattern rota-
tional or irrotational? Find the depth z. of the water at
the radius » = R.

Z
v J_

Pam

2N
a

)

P4.60

For the incompressible plane flow of Prob. P4.6, with
velocity components u = 2y, v = 8x, w = 0, determine
(a) if a velocity potential exists. (b) If so, determine the
form of the velocity potential, and (c) plot a few repre-
sentative potential lines.

P4.62

P4.63

P4.64

P4.65

P4.66

P4.67
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Show that the linear Couette flow between plates in Fig.
1.6 has a stream function but no velocity potential. Why
is this so?

Find the two-dimensional velocity potential ¢(r, ) for
the polar coordinate flow pattern v, = Q/r, vy = K/r,
where Q and K are constants.

Show that the velocity potential ¢(r, z) in axisymmetric
cylindrical coordinates (see Fig. 4.2) is defined such that

Elo} Elo}
v,=— v, = —
ar 9z

Further show that for incompressible flow this potential
satisfies Laplace’s equation in (r, z) coordinates.
A two-dimensional incompressible flow is defined by

Ky
x>+ y2

Kx
v =
x2+y2

where K = constant. Is this flow irrotational? If so, find
its velocity potential, sketch a few potential lines, and
interpret the flow pattern.

A plane polar coordinate velocity potential is defined by

_ Kcos 6

r

K = const

¢

Find the stream function for this flow, sketch some stream-
lines and potential lines, and interpret the flow pattern.
A stream function for a plane, irrotational, polar coor-
dinate flow is

Yy =C0— Klnr C and K = const

Find the velocity potential for this flow. Sketch some
streamlines and potential lines, and interpret the flow
pattern.

Stream function and velocity potential

P4.68

P4.69

P4.70

For the velocity distribution of Prob. P4.4, (a) determine
if a velocity potential exists, and (b), if it does, find an
expression for ¢(x, y) and sketch the potential line which
passes through the point (x, y) = (L/2, L/2).

A steady, two-dimensional flow has the following polar-
coordinate velocity potential:

¢ =Crcosd + Klnr

where C and K are constants. Determine the stream
function (r, 0) for this flow. For extra credit, let C be
a velocity scale U and let K = UL, sketch what the flow
might represent.

A CFD model of steady two-dimensional incompress-
ible flow has printed out the values of stream function
P(x, ), in m?/s, at each of the four corners of a small
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10-cm-by-10-cm cell, as shown in Fig. P4.70. Use these 10-cm-by-10-cm cell, as shown in Fig. P4.73. Use these
numbers to estimate the resultant velocity in the center numbers to estimate the resultant velocity in the center
of the cell and its angle o with respect to the x axis. of the cell and its angle o with respect to the x axis.
W = 19552 m’/s 2.0206 ¢ =4.8338 m¥/s 5.0610
y:l,lm y:l.lm
V? V9
a?? o ?
1.7308 m%/s 1.7978 4.9038 m?/s 5.1236
y=1.0m y=1.0m
x=15m x=16m x=15m x=16m
P4.70 P4.73
P4.71 Consider the following two-dimensional function f(x, y): P4.74 Consider the two-dimensional incompressible polar-
f=AX + By’ + C2 + D where A > 0 coordinate velocity potential
(a) Under what conditions, if any, on (A, B, C, D) can ¢ = Brcosd + BLO

this function be a steady plane-flow velocity potential?
(b) If you find a ¢(x, y) to satisfy part (a), also find the
associated stream function (x, y), if any, for this flow.

P4.72 Water flows through a two-dimensional narrowing wedge
at 9.96 gal/min per meter of width into the paper (Fig. P4.75
P4.72). If this inward flow is purely radial, find an expres-
sion, in SI units, for (a) the stream function and (b) the B( ,
velocity potential of the flow. Assume one-dimensional Y= E(r
flow. The included angle of the wedge is 45°.

where B is a constant and L is a constant length scale.
(a) What are the dimensions of B? (b) Locate the only
stagnation point in this flow field. (¢) Prove that a stream
function exists and then find the function (r, 6).

Given the following steady axisymmetric stream function:

4
- 72) where B and R are constants
2R

valid in the region 0 < r < Rand 0 < z < L. (@) What
are the dimensions of the constant B? (b) Show whether
this flow possesses a velocity potential, and, if so, find
it. (¢) What might this flow represent? Hint: Examine
the axial velocity v,.

*P4.76 A two-dimensional incompressible flow has the velocity
potential

¢ = Kx* — y?) + Cln(x* + y?)

where K and C are constants. In this discussion, avoid the
origin, which is a singularity (infinite velocity). (a) Find

Pa.72 the sole stagnation point of this flow, which is some-
P4.73 A CFD model of steady two-dimensional incompress- where in the upper half plane. (b) Prove that a stream
ible flow has printed out the values of velocity potential function exists, and then find /(x, y), using the hint that

@(x, y), in m?/s, at each of the four corners of a small fdx/(@® + x*) = (1/a)tan” ‘(x/a).



P4.77

P4.78

Outside an inner, intense-activity circle of radius R, a
tropical storm can be simulated by a polar-coordinate
velocity potential ¢(r, ) = U,R 6, where U, is the wind
velocity at radius R. (a) Determine the velocity compo-
nents outside r = R. (b) If, at R = 25 mi, the velocity
is 100 mi/h and the pressure 99 kPa, calculate the veloc-
ity and pressure at » = 100 mi.
An incompressible, irrotational, two-dimensional flow
has the following stream function in polar coordinates:
¢ = Ar"sin(nf) where A and n are constants.

Find an expression for the velocity potential of this flow.

Incompressible viscous fiws

*P4.79

*P4.80

P4.81

Study the combined effect of the two viscous flows in
Fig. 4.12. That is, find u(y) when the upper plate moves
at speed V and there is also a constant pressure gradi-
ent (dp/dx). Is superposition possible? If so, explain
why. Plot representative velocity profiles for (a) zero,
(b) positive, and (c) negative pressure gradients for the
same upper-wall speed V.

Oil, of density p and viscosity wu, drains steadily down
the side of a vertical plate, as in Fig. P4.80. After a
development region near the top of the plate, the oil
film will become independent of z and of constant
thickness 8. Assume that w = w(x) only and that the
atmosphere offers no shear resistance to the surface of
the film. (a) Solve the Navier-Stokes equation for w(x),
and sketch its approximate shape. (b) Suppose that film
thickness & and the slope of the velocity profile at the
wall [0w/dx],,; are measured with a laser-Doppler
anemometer (Chap. 6). Find an expression for oil vis-
cosity u as a function of (p, 8, g, [OW/dx]yan)-

Plate

Oil film

P4.80

Modify the analysis of Fig. 4.13 to find the velocity uy
when the inner cylinder is fixed and the outer cylinder
rotates at angular velocity ();. May this solution be

*P4.82

P4.83

Oil
inlet

Problems 285

added to Eq. (4.140) to represent the flow caused when
both inner and outer cylinders rotate? Explain your
conclusion.

A solid circular cylinder of radius R rotates at angular
velocity () in a viscous incompressible fluid that is at
rest far from the cylinder, as in Fig. P4.82. Make sim-
plifying assumptions and derive the governing differ-
ential equation and boundary conditions for the veloc-
ity field vy in the fluid. Do not solve unless you are
obsessed with this problem. What is the steady-state
flow field for this problem?

Vy(r, 0,1)

P4.82

The flow pattern in bearing lubrication can be illustrated
by Fig. P4.83, where a viscous oil (p, w) is forced into
the gap h(x) between a fixed slipper block and a wall
moving at velocity U. If the gap is thin, # < L, it can
be shown that the pressure and velocity distributions are
of the form p = p(x), u = u(y), v=w = 0. Neglecting
gravity, reduce the Navier-Stokes equations (4.38) to a
single differential equation for u(y). What are the proper
boundary conditions? Integrate and show that

1 dp ( y)
=—— — yh) + 1 —=
“ Zp,dx(y yh +U h

where & = h(x) may be an arbitrary, slowly varying gap
width. (For further information on lubrication theory,
see Ref. 16.)

y

Fixed slipper 0il
block

ho\\

h(x) F—u(y)
L

outlet

Moving wall

P4.83
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*P4.84 Consider a viscous film of liquid draining uniformly

P4.85

P4.86

down the side of a vertical rod of radius a, as in
Fig. P4.84. At some distance down the rod the film will
approach a terminal or fully developed draining flow of
constant outer radius b, with v, = v (r), vy, = v, = 0.
Assume that the atmosphere offers no shear resistance
to the film motion. Derive a differential equation for v,
state the proper boundary conditions, and solve for the
film velocity distribution. How does the film radius b
relate to the total film volume flow rate Q?

A i
N

|
p{l
Fully Ha=0
developed |
. a—a=
region
Film | rb—
s | l U,
S
P4.84

A flat plate of essentially infinite width and breadth
oscillates sinusoidally in its own plane beneath a vis-
cous fluid, as in Fig. P4.85. The fluid is at rest far above
the plate. Making as many simplifying assumptions as
you can, set up the governing differential equation and
boundary conditions for finding the velocity field u in
the fluid. Do not solve (if you can solve it immediately,
you might be able to get exempted from the balance of
this course with credit).

Incompressible
viscous

fluid u(x, y,z,0?

Plate velocity:
D
Uy sin ot

P4.85

SAE 10 oil at 20°C flws between parallel plates 8 mm
apart, as in Fig. P4.86. A mercury manometer, with wall

P4.87

P4.88

pressure taps 1 m apart, registers a 6-cm height, as
shown. Estimate the flow rate of oil for this condition.

SAE 10 0 3 rIlm
6 cm
' Mercury
\ %
P4.86 I'm

SAE 30W oil at 20°C fiws through the 9-cm-diameter
pipe in Fig. P4.87 at an average velocity of 4.3 m/s.

D=9cm

SAE 30W oil ( >

Hg

-~ = —|

{ 25m |
P4.87

(a) Verity that the flow is laminar. (b) Determine the
volume flow rate in m’/h. (¢) Calculate the expected
reading i of the mercury manometer, in cm.

The viscous oil in Fig. P4.88 is set into steady motion
by a concentric inner cylinder moving axially at veloc-
ity U inside a fixed outer cylinder. Assuming constant
pressure and density and a purely axial fluid motion,
solve Eqs. (4.38) for the fluid velocity distribution v,(r).
What are the proper boundary conditions?

Fixed outer cylinder

— V(1)

\\ U
)

P4.88



*P4.89

P4.90

*P4.91

P4.92

Problems 287

Modify Prob. P4.88 so that the outer cylinder also P4.93 A number of straight 25-cm-long microtubes of diam-
moves to the left at constant speed V. Find the velocity eter d are bundled together into a “honeycomb” whose
distribution v,(r). For what ratio V/U will the wall shear total cross-sectional area is 0.0006 m> The pressure
stress be the same at both cylinder surfaces? drop from entrance to exit is 1.5 kPa. It is desired that
It is desired to pump ethanol at 20°C through 25 m of the total volume flow rate be 5 m’/h of water at 20°C.
straight smooth tubing under laminar-flow conditions, (a) What is the appropriate microtube diameter?
Re,; = pVd/pn < 2300. The available pressure drop is 10 (b) How many microtubes are in the bundle? (¢) What
kPa. (@) What is the maximum possible mass flow, in is the Reynolds number of each microtube?
kg/h? (b) What is the appropriate diameter? P4.94 A long solid cylinder rotates steadily in a very viscous
Consider two-dimensional, incompressible, steady fluid, as in Fig. P4.94. Assuming laminar flow, solve the
Couette flow (flow between two infinite parallel Navier-Stokes equation in polar coordinates to deter-
plates with the upper plate moving at constant speed mine the resulting velocity distribution. The fluid is at
and the lower plate stationary, as in Fig. 4.12a). Let rest far from the cylinder. [Hint: the cylinder does not
the fluid be nonnewtonian, with its viscous stresses induce any radial motion.]
given by
-
_ fouY _ [ovY _ (owY

i) i) ()

o <E)u av)“‘ oy (814 aw)“‘
Txy Tyx 2a 37 a Txz Tox 2a 872 + a P, U

. (au aw)“
Ty, = Toy = 30 | ay
where a and c are constants of the fluid. Make all the
same assumptions as in the derivation of Eq. (4.131).
(a) Find the velocity profile u(y). () How does the
velocity profile for this case compare to that of a new-
tonian fluid?
A tank of area A is draining in laminar flow through a P4.94
pipe of filameter D apd lffngt_h L, as showninF lg',P4'92' *P4.95 Two immiscible liquids of equal thickness 4 are being
Neglectmg _the ?Xlt jet kinetic energy _and assuming t_he sheared between a fixed and a moving plate, as in Fig.
pipe flow 1s.dr1ven by the hydrostatic pressure %t {ts P4.95. Gravity is neglected, and there is no variation
entrance, derive a formula for the tank level A(z) if its . . - .
o 3 with x. Find an expression for (a) the velocity at the
initial level is /. interface and (b) the shear stress in each fluid. Assume
steady laminar flow.
— g . l >V
Area A,
h LY P2, 1o
h(t) P,
h
P1, Ky
D, L ' N
40}
Fixed

P4.92 P4.95
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P4.96

Reconsider Prob. P1.44 and calculate (a) the inner shear
stress and (b) the power required, if the exact laminar-
flow formula, Eq. (4.140) is used. (c) Determine
whether this flow pattern is stable. Hint: The shear stress
in (r, 6) coordinates is not like plane flow.

Slip fiws

P4.97

For the pressure-gradient flow between two parallel
plates of Fig. 4.12(b), reanalyze for the case of slip fiw
at both walls. Use the simple slip condition uy,; =
¢ (dul/dy)y.n1, where ( is the mean free path of the fluid.

Word Problems

W4.1

W4.2

W4.3

W4.4

W4.5

The total acceleration of a fluid particle is given by Eq.
(4.2) in the eulerian system, where V is a known function
of space and time. Explain how we might evaluate parti-
cle acceleration in the lagrangian frame, where particle
position r is a known function of time and initial position,
r = fen(ry, #). Can you give an illustrative example?

Is it true that the continuity relation, Eq. (4.6), is valid
for both viscous and inviscid, newtonian and nonnew-
tonian, compressible and incompressible flow? If so, are
there any limitations on this equation?

Consider a CD (compact disc) rotating at angular veloc-
ity Q. Does it have vorticity in the sense of this chap-
ter? If so, how much vorticity?

How much acceleration can fluids endure? Are fluids
like astronauts, who feel that 5g is severe? Perhaps use
the flow pattern of Example 4.8, at » = R, to make some
estimates of fluid acceleration magnitudes.

State the conditions (there are more than one) under
which the analysis of temperature distribution in a flow
field can be completely uncoupled, so that a separate
analysis for velocity and pressure is possible. Can we
do this for both laminar and turbulent flow?

Fundamentals of Engineering Exam Problems

This chapter is not a favorite of the people who prepare the FE
Exam. Probably not a single problem from this chapter will
appear on the exam, but if some did, they might be like these.

FE4.1

FE4.2

Given the steady, incompressible velocity distribution
V =3xi + Cyj + Ok, where C is a constant, if con-
servation of mass is satisfied, the value of C should be
(a)3, (b)32, (¢)0, (d) =32, (e) -3

Given the steady velocity distribution V = 3xi + 0j +
Cyk, where C is a constant, if the flow is irrotational,
the value of C should be
(a)3, (b)32, (c)0,

(d) =312, (e) =3

P4.98

W4.6

Ww4.7

w4.8

W4.9

(a) Sketch the expected velocity profile. (b) Find an
expression for the shear stress at each wall. (¢) Find the
volume flow between the plates.

For the pressure-gradient flow in a circular tube, in Sect.
4.10, reanalyze for the case of slip fiw at the wall. Use
the simple slip condition v, . = € (dv,/dr)y.;, where ¢
is the mean free path of the fluid. (a) Sketch the
expected velocity profile. (b) Find an expression for the
shear stress at the wall. (¢) Find the volume flow
through the tube.

Consider liquid flow over a dam or weir. How might the
boundary conditions and the flow pattern change when
we compare water flow over a large prototype to SAE
30 oil flow over a tiny scale model?

What is the difference between the stream function
¢ and our method of finding the streamlines from
Sec. 1.11? Or are they essentially the same?

Under what conditions do both the stream function ¢
and the velocity potential ¢ exist for a flow field? When
does one exist but not the other?

How might the remarkable three-dimensional Taylor insta-
bility of Fig. 4.14 be predicted? Discuss a general proce-
dure for examining the stability of a given flow pattern.

W4.10 Consider an irrotational, incompressible, axisymmetric

FE4.3

FE4.4

(0/06 = 0) flow in (r, z) coordinates. Does a stream
function exist? If so, does it satisfy Laplace’s equation?
Are lines of constant ¢ equal to the flow streamlines?
Does a velocity potential exist? If so, does it satisfy
Laplace’s equation? Are lines of constant ¢ everywhere
perpendicular to the ¢ lines?

Given the steady, incompressible velocity distribution
V = 3xi + Cyj + Ok, where C is a constant, the shear
stress T, at the point (x, y, z) is given by

(@) 3, (b)) Bx+ Cy)p, (©) 0, (@) Cu,

@ G+ Ou

Given the steady incompressible velocity distribution
u = Ax, v = By, and w = Cxy, where (A, B, C) are
constants. This flow satisfies the equation of continu-
ity if A equals

(a) B, (b)B + C,
(e =B+ 0

(0B —C, (d —B,



FE4.5

FE4.6

For the velocity field in Prob. FE4.4, the convective
acceleration in the x direction is

(@) A%, (b) A%, (c) B, (d) By’ (¢) Cx’y

If, for laminar flow in a smooth straight tube, the tube
diameter and length both double, while everything else

Comprehensive Problems

C4.1

C4.2

In a certain medical application, water at room tempera-
ture and pressure flows through a rectangular channel of
length L = 10 cm, width s = 1.0 cm, and gap thickness
b =0.30 mm as in Fig. C4.1. The volume flow rate is
sinusoidal with amplitude Q0 = 0.50 mL/s and frequency
f=20Hz, ie., Q=0 sin Qmft).

(a) Calculate the maximum Reynolds number (Re = Vb/v)
based on maximum average velocity and gap thickness.
Channel flow like this remains laminar for Re less than
about 2000. If Re is greater than about 2000, the flow
will be turbulent. Is this flow laminar or turbulent? (b) In
this problem, the frequency is low enough that at any
given time, the flow can be solved as if it were steady at
the given flow rate. (This is called a quasi-steady assump-
tion.) At any arbitrary instant of time, find an expression
for streamwise velocity u as a function of y, u, dp/dx, and
b, where dp/dx is the pressure gradient required to push
the flow through the channel at volume flow rate Q. In
addition, estimate the maximum magnitude of velocity
component u. (c) At any instant of time, find a relation-
ship between volume flow rate Q and pressure gradient
dpldx. Your answer should be given as an expression for Q
as a function of dp/dx, s, b, and viscosity u. (d) Estimate
the wall shear stress, 7,, as a function of Q, f w, b, s, and
time (7). (e) Finally, for the numbers given in the prob-
lem statement, estimate the amplitude of the wall shear
stress, 7, , in N/m?>.

A belt moves upward at velocity V, dragging a film of
viscous liquid of thickness %, as in Fig. C4.2. Near the
belt, the film moves upward due to no slip. At its outer
edge, the film moves downward due to gravity. Assum-
ing that the only nonzero velocity is v(x), with zero shear
stress at the outer film edge, derive a formula for (a) v(x),
(b) the average velocity V,, in the film, and (c) the
velocity V. for which there is no net flow either up or
down. (d) Sketch v(x) for case (c).

Comprehensive Problems 289

remains the same, the volume flow rate will increase
by a factor of
@2, b4, (8, (@12, ()16

C4.1

~<—> 1 = constant

»v

——> X, U

—

P 1k

C4.2 Belt k
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Two engineers are dwarfed by a full-scale parachute being tested in 2007 at the NASA Ames
Research Center in Moffett Field, California. The wind tunnel, 80 ft high and 120 ft wide, is
the largest such facility in the world. The parachute, 55 ft in diameter, is intended to help land
an analytical roving laboratory on Mars in 2010. It has 80 suspension lines and is the largest
disk-gap-band type parachute [41] ever built. It was designed by Pioneer Aerospace of South
Windsor, Connecticut and can withstand loads in excess of 80,000 Ibf. (Photo courtesy of NASA/
JPL-Caltech.)



5.1 Introduction

Chapter 5
Dimensional Analysis
and Similarity

Motivation. In this chapter we discuss the planning, presentation, and interpretation
of experimental data. We shall try to convince you that such data are best presented
in dimensionless form. Experiments that might result in tables of output, or even mul-
tiple volumes of tables, might be reduced to a single set of curves—or even a single
curve—when suitably nondimensionalized. The technique for doing this is dimen-
sional analysis. It is also effective in theoretical studies.

Chapter 3 presented large-scale control volume balances of mass, momentum, and
energy, which led to global results: mass flow, force, torque, total work done, or heat
transfer. Chapter 4 presented infinitesimal balances that led to the basic partial dif-
ferential equations of fluid flow and some particular solutions for both inviscid and
viscous (laminar) flow. These straight analytical techniques are limited to simple
geometries and uniform boundary conditions. Only a fraction of engineering flow
problems can be solved by direct analytical formulas.

Most practical fluid flow problems are too complex, both geometrically and phys-
ically, to be solved analytically. They must be tested by experiment or approximated
by computational fluid dynamics (CFD) [2]. These results are typically reported as
experimental or numerical data points and smoothed curves. Such data have much
more generality if they are expressed in compact, economic form. This is the moti-
vation for dimensional analysis. The technique is a mainstay of fluid mechanics and
is also widely used in all engineering fields plus the physical, biological, medical, and
social sciences. The present chapter shows how dimensional analysis improves the
presentation of both data and theory.

Basically, dimensional analysis is a method for reducing the number and complexity
of experimental variables that affect a given physical phenomenon, by using a sort
of compacting technique. If a phenomenon depends on n dimensional variables,
dimensional analysis will reduce the problem to only k dimensionless variables, where
the reduction n — k = 1, 2, 3, or 4, depending on the problem complexity. Generally

293
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n — k equals the number of different dimensions (sometimes called basic or primary
or fundamental dimensions) that govern the problem. In fluid mechanics, the four
basic dimensions are usually taken to be mass M, length L, time 7, and temperature
0, or an MLTO system for short. Alternatively, one uses an FLT® system, with force
F replacing mass.

Although its purpose is to reduce variables and group them in dimensionless form,
dimensional analysis has several side benefits. The first is enormous savings in time
and money. Suppose one knew that the force F on a particular body shape immersed
in a stream of fluid depended only on the body length L, stream velocity V, fluid den-
sity p, and fluid viscosity w; that is,

F=f(L,V,p, p G.D

Suppose further that the geometry and flow conditions are so complicated that our inte-
gral theories (Chap. 3) and differential equations (Chap. 4) fail to yield the solution for
the force. Then we must find the function f{L, V, p, n) experimentally or numerically.

Generally speaking, it takes about 10 points to define a curve. To find the effect of
body length in Eq. (5.1), we have to run the experiment for 10 lengths L. For each L
we need 10 values of V, 10 values of p, and 10 values of u, making a grand total of
10*, or 10,000, experiments. At $100 per experiment—well, you see what we are get-
ting into. However, with dimensional analysis, we can immediately reduce Eq. (5.1)

to the equivalent form
F <pVL)
sz 12 8 w

or Cr = gRe)

(5.2)

That is, the dimensionless force coeffiient F /(pV*L?) is a function only of the dimen-
sionless Reynolds number pVL/i. We shall learn exactly how to make this reduction
in Secs. 5.2 and 5.3.

Note that Eq. (5.2) is just an example, not the full story, of forces caused by fluid
flows. Some fluid forces have a very weak or negligible Reynolds number dependence
in wide regions (Fig. 5.3a). Other groups may also be important. The force coefficient
may depend, in high-speed gas flow, on the Mach number, Ma = V/a, where a is the
speed of sound. In free-surface flows, such as ship drag, Cr may depend upon Froude
number, Fr = V?/(gL), where g is the acceleration of gravity. In turbulent flow, force may
depend upon the roughness ratio, €/L, where € is the roughness height of the surface.

The function g is different mathematically from the original function f, but it con-
tains all the same information. Nothing is lost in a dimensional analysis. And think
of the savings: We can establish g by running the experiment for only 10 values of
the single variable called the Reynolds number. We do not have to vary L, V, p, or
o separately but only the grouping pVL/w. This we do merely by varying velocity V
in, say, a wind tunnel or drop test or water channel, and there is no need to build
10 different bodies or find 100 different fluids with 10 densities and 10 viscosities.
The cost is now about $1000, maybe less.

A second side benefit of dimensional analysis is that it helps our thinking and plan-
ning for an experiment or theory. It suggests dimensionless ways of writing equations
before we spend money on computer analysis to find solutions. It suggests variables
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that can be discarded; sometimes dimensional analysis will immediately reject vari-
ables, and at other times it groups them off to the side, where a few simple tests will
show them to be unimportant. Finally, dimensional analysis will often give a great
deal of insight into the form of the physical relationship we are trying to study.

A third benefit is that dimensional analysis provides scaling laws that can convert
data from a cheap, small model to design information for an expensive, large proto-
type. We do not build a million-dollar airplane and see whether it has enough lift
force. We measure the lift on a small model and use a scaling law to predict the lift
on the full-scale prototype airplane. There are rules we shall explain for finding scal-
ing laws. When the scaling law is valid, we say that a condition of similarity exists
between the model and the prototype. In the simple case of Eq. (5.1), similarity is
achieved if the Reynolds number is the same for the model and prototype because the
function g then requires the force coefficient to be the same also:

If Re,, =Re, then Cg, = Cg,

(5.3)

where subscripts m and p mean model and prototype, respectively. From the defini-
tion of force coefficient, this means that

£ _ (1) .
Ey Pu\Vi) \Ly
for data taken where p,V,,L,/u, = p,,VnLy/ . Equation (5.4) is a scaling law: If you
measure the model force at the model Reynolds number, the prototype force at the
same Reynolds number equals the model force times the density ratio times the veloc-
ity ratio squared times the length ratio squared. We shall give more examples later.
Do you understand these introductory explanations? Be careful; learning dimensional
analysis is like learning to play tennis: There are levels of the game. We can establish
some ground rules and do some fairly good work in this brief chapter, but dimensional
analysis in the broad view has many subtleties and nuances that only time, practice, and
maturity enable you to master. Although dimensional analysis has a firm physical and
mathematical foundation, considerable art and skill are needed to use it effectively.

EXAMPLE 5.1

A copepod is a water crustacean approximately 1 mm in diameter. We want to know the
drag force on the copepod when it moves slowly in fresh water. A scale model 100 times
larger is made and tested in glycerin at V = 30 cm/s. The measured drag on the model is
1.3 N. For similar conditions, what are the velocity and drag of the actual copepod in water?
Assume that Eq. (5.2) applies and the temperature is 20°C.

Solution

e Property values: From Table A.3, the densities and viscosities at 20°C are
Water (prototype): M, = 0.001 kg/(m-s) Py = 998 kg/m®
Glycerin (model): ML, = 1.5 kg/(m-s) pm = 1263 kg/m®

o Assumptions: Equation (5.2) is appropriate and similarity is achieved; that is, the model
and prototype have the same Reynolds number and, therefore, the same force coefficient.
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e Approach: The length scales are L,, = 100 mm and L, = 1 mm. Calculate the Reynolds
number and force coefficient of the model and set them equal to prototype values:

_ VL _ (1263 kg/mDO3 /9O m) _ L o (998 ke/m)V,(0.001 m)
Mo 1.5 kg/(m-s) ' P 0.001 kg/(m-s)

Solve for V, = 0.0253 m/s = 2.53 cm/s Ans.

Re,,

In like manner, using the prototype velocity just found, equate the force coefficients:

Crm = Frgz = 31'3N 2 ;=114
pVAL2, (1263 kg/m?)(0.3 m/s)*(0.1 m)
=Cpp = 3 = 2 3
(998 kg/m™)(0.0253 m/s)~(0.001 m)
Solve for F,, = 7.3E-TN A,

* Comments: Assuming we modeled the Reynolds number correctly, the model test is a very
good idea, as it would obviously be difficult to measure such a tiny copepod drag force.

Historically, the first person to write extensively about units and dimensional
reasoning in physical relations was Euler in 1765. Euler’s ideas were far ahead of his
time, as were those of Joseph Fourier, whose 1822 book Analytical Theory of Heat
outlined what is now called the principle of dimensional homogeneity and even devel-
oped some similarity rules for heat flow. There were no further significant advances
until Lord Rayleigh’s book in 1877, Theory of Sound, which proposed a “method of
dimensions” and gave several examples of dimensional analysis. The final break-
through that established the method as we know it today is generally credited to
E. Buckingham in 1914 [1], whose paper outlined what is now called the Buckingham
Pi Theorem for describing dimensionless parameters (see Sec. 5.3). However, it is
now known that a Frenchman, A. Vaschy, in 1892 and a Russian, D. Riabouchinsky,
in 1911 had independently published papers reporting results equivalent to the pi the-
orem. Following Buckingham’s paper, P. W. Bridgman published a classic book in
1922 [3], outlining the general theory of dimensional analysis.

Dimensional analysis is so valuable and subtle, with both skill and art involved,
that it has spawned a wide variety of textbooks and treatises. The writer is aware of
more than 30 books on the subject, of which his engineering favorites are listed here
[3-10]. Dimensional analysis is not confined to fluid mechanics, or even to engi-
neering. Specialized books have been published on the application of dimensional
analysis to metrology [11], astrophysics [12], economics [13], chemistry [14], hydrol-
ogy [15], medications [16], clinical medicine [17], chemical processing pilot plants
[18], social sciences [19], biomedical sciences [20], pharmacy [21], fractal geometry
[22], and even the growth of plants [23]. Clearly this is a subject well worth learn-
ing for many career paths.

In making the remarkable jump from the five-variable Eq. (5.1) to the two-variable
Eq. (5.2), we were exploiting a rule that is almost a self-evident axiom in physics.
This rule, the principle of dimensional homogeneity (PDH), can be stated as follows:
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If an equation truly expresses a proper relationship between variables in a physical process,
it will be dimensionally homogeneous; that is, each of its additive terms will have the same
dimensions.

All the equations that are derived from the theory of mechanics are of this form. For
example, consider the relation that expresses the displacement of a falling body:

S =S+ Vot + 381 (5.5)

Each term in this equation is a displacement, or length, and has dimensions {L}. The
equation is dimensionally homogeneous. Note also that any consistent set of units can
be used to calculate a result.

Consider Bernoulli’s equation for incompressible flow:

p 1,
—+ =V 4+ gz = t 5.6
PR gz = cons (5.6)

Each term, including the constant, has dimensions of velocity squared, or {L2T72}.
The equation is dimensionally homogeneous and gives proper results for any consis-
tent set of units.

Students count on dimensional homogeneity and use it to check themselves when
they cannot quite remember an equation during an exam. For example, which is it:

§=3g? or §=3g% (5.7)

By checking the dimensions, we reject the second form and back up our faulty mem-
ory. We are exploiting the principle of dimensional homogeneity, and this chapter sim-
ply exploits it further.

Variables and Constants Equations (5.5) and (5.6) also illustrate some other factors that often enter into a
dimensional analysis:

Dimensional variables are the quantities that actually vary during a given case
and would be plotted against each other to show the data. In Eq. (5.5), they
are S and £; in Eq. (5.6) they are p, V, and z. All have dimensions, and all
can be nondimensionalized as a dimensional analysis technique.

Dimensional constants may vary from case to case but are held constant during a
given run. In Eq. (5.5) they are Sy, Vj, and g, and in Eq. (5.6) they are p, g, and
C. They all have dimensions and conceivably could be nondimensionalized, but
they are normally used to help nondimensionalize the variables in the problem.

Pure constants have no dimensions and never did. They arise from mathematical
manipulations. In both Egs. (5.5) and (5.6) they are 3 and the exponent 2,
both of which came from an integration: [t dr = 3, [ V.dV = V2 Other
common dimensionless constants are 7 and e. Also, the argument of any
mathematical function, such as In, exp, cos, or J,, is dimensionless.

Angles and revolutions are dimensionless. The preferred unit for an angle is the
radian, which makes it clear that an angle is a ratio. In like manner, a revolu-
tion is 2 radians.
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Counting numbers are dimensionless. For example, if we triple the energy E to
3E, the coefficient 3 is dimensionless.

Note that integration and differentiation of an equation may change the dimen-
sions but not the homogeneity of the equation. For example, integrate or differenti-
ate Eq. (5.5):

J Sdt = Sot + 3Vot* + Ler (5.8a)

T Vo + gt (5.8b)
In the integrated form (5.8a) every term has dimensions of {LT}, while in the
derivative form (5.8b) every term is a velocity {LT'}.

Finally, some physical variables are naturally dimensionless by virtue of their def-
inition as ratios of dimensional quantities. Some examples are strain (change in length
per unit length), Poisson’s ratio (ratio of transverse strain to longitudinal strain), and
specific gravity (ratio of density to standard water density).

The motive behind dimensional analysis is that any dimensionally homogeneous
equation can be written in an entirely equivalent nondimensional form that is more
compact. Usually there are multiple methods of presenting one’s dimensionless data
or theory. Let us illustrate these concepts more thoroughly by using the falling-body
relation (5.5) as an example.

Equation (5.5) is familiar and simple, yet illustrates most of the concepts of dimen-
sional analysis. It contains five terms (S, Sy, Vo, f, g), which we may divide, in our
thinking, into variables and parameters. The variables are the things we wish to plot,
the basic output of the experiment or theory: in this case, S versus t. The parameters
are those quantities whose effect on the variables we wish to know: in this case S,
Vo, and g. Almost any engineering study can be subdivided in this manner.

To nondimensionalize our results, we need to know how many dimensions are con-
tained among our variables and parameters: in this case, only two, length {L} and
time {7}. Check each term to verify this:

(S} =1{So} =1{L} () ={T} {Vo}={LT"'} {g}={LT?}

Among our parameters, we therefore select two to be scaling parameters (also called
repeating variables), used to define dimensionless variables. What remains will be the
“basic” parameter(s) whose effect we wish to show in our plot. These choices will
not affect the content of our data, only the form of their presentation. Clearly there
is ambiguity in these choices, something that often vexes the beginning experimenter.
But the ambiguity is deliberate. Its purpose is to show a particular effect, and the
choice is yours to make.

For the falling-body problem, we select any two of the three parameters to be scal-
ing parameters. Thus we have three options. Let us discuss and display them in turn.

'T am indebted to Prof. Jacques Lewalle of Syracuse University for suggesting, outlining, and clarify-
ing this entire discussion.



5.2 The Principle of Dimensional Homogeneity 299

Option 1: Scaling parameters S, and Vj,: the effect of gravity g.

First use the scaling parameters (S, V,) to define dimensionless (*) displacement
and time. There is only one suitable definition for each:”
S W

sk

S* = —
So So

(5.9)
Substitute these variables into Eq. (5.5) and clean everything up until each term is
dimensionless. The result is our first option:

_gSO
o =220

1
S¥ =1+ 1+ + —art’ 5
2 Vs

(5.10)
This result is shown plotted in Fig. 5.1a. There is a single dimensionless parameter
a, which shows here the effect of gravity. It cannot show the direct effects of S, and
Vo, since these two are hidden in the ordinate and abscissa. We see that gravity
increases the parabolic rate of fall for #* > 0, but not the initial slope at * = 0. We
would learn the same from falling-body data, and the plot, within experimental accu-
racy, would look like Fig. 5.1a.

Option 2: Scaling parameters V, and g: the effect of initial displacement Sy.
Now use the new scaling parameters (Vy, g) to define dimensionless (**) dis-
placement and time. Again there is only one suitable definition:

S

Sk = _g2 P = ti (5.11)
Vo Vo

Substitute these variables into Eq. (5.5) and clean everything up again. The result is

our second option:

_ 85
a = 229

5.12
V2 (5.12)

S¥ = o + pEE 4 ll**2
2
This result is plotted in Fig. 5.1b. The same single parameter o again appears and
here shows the effect of initial displacement, which merely moves the curves upward
without changing their shape.

Option 3: Scaling parameters Sy and g: the effect of initial speed V.
Finally use the scaling parameters (So, g) to define dimensionless (***) displace-
ment and time. Again there is only one suitable definition:

172
Sk = Si Rk = l(i) (513)
0 0

Substitute these variables into Eq. (5.5) and clean everything up as usual. The result
is our third and final option:

1 1 Vo
Qe = | 4 Bk 4 prke2 = = 5.14

*Make them proportional to S and t. Do not define dimensionless terms upside down: S /S or
So/ (Vo). The plots will look funny, users of your data will be confused, and your supervisor will be
angry. It is not a good idea.
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Nokio

Fig. 5.1 Three entirely equivalent
dimensionless presentations of the
falling-body problem, Eq. (5.5): 0 | |
the effect of (a) gravity, (b) initial 0
displacement, and (c) initial velocity. -
All plots contain the same = 1g/S))
information. ()

This final presentation is shown in Fig. 5.1c. Once again the parameter « appears, but
we have redefined it upside down, 8 = 1/Va, so that our display parameter V, is in
the numerator and is linear. This is our free choice and simply improves the display.
Figure 5.1¢ shows that initial velocity increases the falling displacement.

Note that, in all three options, the same parameter « appears but has a different mean-
ing: dimensionless gravity, initial displacement, and initial velocity. The graphs, which
contain exactly the same information, change their appearance to reflect these differences.

Whereas the original problem, Eq. (5.5), involved five quantities, the dimension-
less presentations involve only three, having the form

_ 8%

S' =fen(t, @) a =% (5.15)
Vo
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The reduction 5 — 3 = 2 should equal the number of fundamental dimensions
involved in the problem {L, T}. This idea led to the pi theorem (Sec. 5.3).

The selection of scaling variables is left to the user, but there are some guidelines. In Eq.

(5.2), it is now clear that the scaling variables were p, V, and L, since they appear in both

force coefficient and Reynolds number. We could then interpret data from Eq. (5.2) as

the variation of dimensionless force versus dimensionless viscosity, since each appears in

only one dimensionless group. Similarly, in Eq. (5.5) the scaling variables were selected

from (So, Vo, &), not (S, 1), because we wished to plot S versus ¢ in the final result.
The following are some guidelines for selecting scaling variables:

1. They must not form a dimensionless group among themselves, but adding one
more variable will form a dimensionless quantity. For example, test powers of
p, V, and L:

pVPLE = (ML*Y(LIT)" (L) = MLT® onlyif a=0,b=0,¢c=0

In this case, we can see why this is so: Only p contains the dimension {M},
and only V contains the dimension {7}, so no cancellation is possible. If, now,
we add u to the scaling group, we will obtain the Reynolds number. If we add
F to the group, we form the force coefficient.

2. Do not select output variables for your scaling parameters. In Eq. (5.1), certainly
do not select F, which you wish to isolate for your plot. Nor was u selected,
for we wished to plot force versus viscosity.

3. If convenient, select popular, not obscure, scaling variables because they will ap-
pear in all of your dimensionless groups. Select density, not surface tension. Select
body length, not surface roughness. Select stream velocity, not speed of sound.

The examples that follow will make this clear. Problem assignments might give hints.
Suppose we wish to study drag force versus velocity. Then we would not use V as
a scaling parameter in Eq. (5.1). We would use (p, u, L) instead, and the final dimen-
sionless function would become
Cp= ﬁz = f(Re) Re = VL (5.16)
2 o
In plotting these data, we would not be able to discern the effect of p or u, since they
appear in both dimensionless groups. The grouping C; again would mean dimen-
sionless force, and Re is now interpreted as either dimensionless velocity or size.®
The plot would be quite different compared to Eq. (5.2), although it contains exactly
the same information. The development of parameters such as Cj and Re from the
initial variables is the subject of the pi theorem (Sec. 5.3).

The foundation of the dimensional analysis method rests on two assumptions: (1) The
proposed physical relation is dimensionally homogeneous, and (2) all the relevant
variables have been included in the proposed relation.

If a relevant variable is missing, dimensional analysis will fail, giving either
algebraic difficulties or, worse, yielding a dimensionless formulation that does not

3We were lucky to achieve a size effect because in this case L, a scaling parameter, did not appear in
the drag coefficient.
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resolve the process. A typical case is Manning’s open-channel formula, discussed
in Example 1.4:
V= £R2/3sl/2 (1)
n

Since V is velocity, R is a radius, and n and S are dimensionless, the formula is not
dimensionally homogeneous. This should be a warning that (1) the formula changes
if the units of V and R change and (2) if valid, it represents a very special case. Equa-
tion (1) in Example 1.4 predates the dimensional analysis technique and is valid only
for water in rough channels at moderate velocities and large radii in BG units.

Such dimensionally inhomogeneous formulas abound in the hydraulics literature.
Another example is the Hazen-Williams formula [24] for volume flow of water through
a straight smooth pipe:

d 0.54
0= 61.9D2'63(—p) (5.17)
dx

where D is diameter and dp/dx is the pressure gradient. Some of these formulas arise
because numbers have been inserted for fluid properties and other physical data into
perfectly legitimate homogeneous formulas. We shall not give the units of Eq. (5.17)
to avoid encouraging its use.

On the other hand, some formulas are “constructs” that cannot be made dimen-
sionally homogeneous. The “variables” they relate cannot be analyzed by the dimen-
sional analysis technique. Most of these formulas are raw empiricisms convenient to
a small group of specialists. Here are three examples:

25,000
=—" 5.18
100 — R ( )
140

= 5.19
S 130 + API ( )

3.74 172
0.0147Dy — =026t — — (5.20)

Dg Ir

Equation (5.18) relates the Brinell hardness B of a metal to its Rockwell hardness
R. Equation (5.19) relates the specific gravity S of an oil to its density in degrees
API. Equation (5.20) relates the viscosity of a liquid in Dg, or degrees Engler, to
its viscosity 7z in Saybolt seconds. Such formulas have a certain usefulness when
communicated between fellow specialists, but we cannot handle them here. Vari-
ables like Brinell hardness and Saybolt viscosity are not suited to an MLT® dimen-
sional system.

There are several methods of reducing a number of dimensional variables into a smaller
number of dimensionless groups. The first scheme given here was proposed in 1914 by
Buckingham [1] and is now called the Buckingham Pi Theorem. The name pi comes from
the mathematical notation I, meaning a product of variables. The dimensionless groups
found from the theorem are power products denoted by II;, II,, II;, etc. The method
allows the pi groups to be found in sequential order without resorting to free exponents.
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The first part of the pi theorem explains what reduction in variables to expect:

If a physical process satisfies the PDH and involves n dimensional variables, it can be
reduced to a relation between only k dimensionless variables or IIs. The reduction j = n — k
equals the maximum number of variables that do not form a pi among themselves and is
always less than or equal to the number of dimensions describing the variables.

Take the specific case of force on an immersed body: Eq. (5.1) contains five vari-
ables F, L, U, p, and u described by three dimensions {MLT}. Thus n = 5 and j = 3.
Therefore it is a good guess that we can reduce the problem to k pi groups, with k =
n—j=5—3=2. And this is exactly what we obtained: two dimensionless vari-
ables I, = C and I, = Re. On rare occasions it may take more pi groups than this
minimum (see Example 5.5).

The second part of the theorem shows how to find the pi groups one at a time:

Find the reduction j, then select j scaling variables that do not form a pi among themselves.*
Each desired pi group will be a power product of these j variables plus one additional vari-
able, which is assigned any convenient nonzero exponent. Each pi group thus found is inde-
pendent.

To be specific, suppose the process involves five variables:

v; = f(va, U3, Vs, Us)

Suppose there are three dimensions { MLT} and we search around and find that indeed
j=3.Then k=5 — 3 =2 and we expect, from the theorem, two and only two pi
groups. Pick out three convenient variables that do not form a pi, and suppose these
turn out to be v,, v, and vy. Then the two pi groups are formed by power products
of these three plus one additional variable, either v; or vs:

I = @) @) ) vy = MPLT® I = (5)"(v3) (va) vs = MPLT®
Here we have arbitrarily chosen v, and vs, the added variables, to have unit expo-
nents. Equating exponents of the various dimensions is guaranteed by the theorem to
give unique values of a, b, and c¢ for each pi. And they are independent because only
I1; contains v; and only II, contains vs. It is a very neat system once you get used

to the procedure. We shall illustrate it with several examples.
Typically, six steps are involved:

1. List and count the n variables involved in the problem. If any important variables
are missing, dimensional analysis will fail.

2. List the dimensions of each variable according to {MLT®} or {FLT®}. A list
is given in Table 5.1.

3. Find j. Initially guess j equal to the number of different dimensions present,
and look for j variables that do not form a pi product. If no luck, reduce j by
1 and look again. With practice, you will find j rapidly.

4. Select j scaling parameters that do not form a pi product. Make sure they
please you and have some generality if possible, because they will then appear

“Make a clever choice here because all pi groups will contain these j variables in various groupings.
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Table 5.1 Dimensions of Fluid-

Mechanics Properties

Step 1

Dimensions

Quantity Symbol MLT® FLTO
Length L L L
Area A L L
Volume Vv L} L}
Velocity v Lr! LT™!
Acceleration dvildt LT? LT
Speed of sound a Lr! Lr!
Volume flow 0 L’r7! L’77!
Mass flow m ! FTL™!
Pressure, stress p, o, T ML 'T? FL™?
Strain rate € ! 77!
Angle 0 None None
Angular velocity w, 7! 7!
Viscosity n ML'T! FTL™?
Kinematic viscosity v 7! L’}
Surface tension Y MT? FL™!
Force F MLT > F
Moment, torque M ML*T? FL
Power P MLT FLT™!
Work, energy W, E ML’T 2 FL
Density p ML FT°L™*
Temperature T (C] (C]
Specific heat Cps Cy L’T7?07! L’T?07!
Specific weight b% ML>T? FL™3
Thermal conductivity k MLT0~ FT'e™!
Thermal expansion coefficient B o' 0!

in every one of your pi groups. Pick density or velocity or length. Do not pick
surface tension, for example, or you will form six different independent Weber-
number parameters and thoroughly annoy your colleagues.

Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents that make the product dimensionless.
Try to arrange for your output or dependent variables (force, pressure drop,
torque, power) to appear in the numerator, and your plots will look better. Do
this sequentially, adding one new variable each time, and you will find all

n — j = k desired pi products.

Write the final dimensionless function, and check the terms to make sure all pi
groups are dimensionless.

EXAMPLE 5.2

Repeat the development of Eq. (5.2) from Eq. (5.1), using the pi theorem.

Solution

Write the function and count variables:

F=fL,U,p,

there are five variables (n = 5)



Step 2

Step 3

Step 4
Step 5
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List dimensions of each variable. From Table 5.1

L R N R '

oer?y |y | oary |y | opory

Find j. No variable contains the dimension ©, and so j is less than or equal to 3 (MLT).
We inspect the list and see that L, U, and p cannot form a pi group because only p con-
tains mass and only U contains time. Therefore j does equal 3,and n —j=5—-3 =2 =k.
The pi theorem guarantees for this problem that there will be exactly two independent
dimensionless groups.

Select repeating j variables. The group L, U, p we found in step 3 will do fine.

Combine L, U, p with one additional variable, in sequence, to find the two pi products.

First add force to find II;. You may select any exponent on this additional term as you
please, to place it in the numerator or denominator to any power. Since F' is the output, or
dependent, variable, we select it to appear to the first power in the numerator:

I, = L*UPp°F = (LY*LT HYoML ™3 MLT%) = M°L°T°

Equate exponents:

Length: atb—3c+1=0
Mass: c+1=0
Time: —b —-2=0

We can solve explicitly for
a= -2 b=-2 c=—1

F

Theref II,=L"2U % 'F=
crerore 1 p pU2L2

= Cr Ans.

This is exactly the right pi group as in Eq. (5.2). By varying the exponent on F, we could
have found other equivalent groups such as ULp"*/F"?,

Finally, add viscosity to L, U, and p to find II,. Select any power you like for viscos-
ity. By hindsight and custom, we select the power —1 to place it in the denominator:

H2 — LaUhpc,u,71 — La(LTfl)h(MLffi)C(MLflel)f] — MOL()TO

Equate exponents:

Length: atb—3c+1=0
Mass: c—1=0
Time: —b +1=0

from which we find

Therefore IL =L'Up'u"'==—=Re Ans.
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Step 6

Step 1
Step 2

Step 3

Step 4a

We know we are finished; this is the second and last pi group. The theorem guarantees that
the functional relationship must be of the equivalent form

F (pUL>
—ma =8l Ans.
pU'L iz

which is exactly Eq. (5.2).

EXAMPLE 5.3

The power input P to a centrifugal pump is a function of the volume flow Q, impeller diam-
eter D, rotational rate (), and the density p and viscosity w of the fluid:

P = f(Q. D, Q, p, )

Rewrite this as a dimensionless relationship. Hint: Use ), p, and D as repeating
variables.

Solution

Count the variables. There are six (don’t forget the one on the left, P).

List the dimensions of each variable from Table 5.1. Use the {FLTO®} system:
Pl e | b e | e | o #

ey | ey | | ey | ey |y

Find j. Lucky us, we were told to use (), p, D) as repeating variables, so surely j = 3, the
number of dimensions (FLT)? Check that these three do not form a pi group:

QpPD = (T YHYFT’L™H L) = FOL°T®  onlyif a=0,b=0¢c=0

Yes, j = 3. This was not as obvious as the scaling group (L, U, p) in Example 5.2, but it
is true. We now know, from the theorem, that adding one more variable will indeed form a

pi group.
Combine ({), p, D) with power P to find the first pi group:
I, = Q%°DP = (T Y'FT’L™ %P (L)(FLT ") = F°L°T®

Equate exponents:

Force: b +1=0
Length: —4b +c +1=0
Time: —a + 2b —-1=0
Solve algebraically to obtain a = —3, b = —1, and ¢ = —5. This first pi group, the out-

put dimensionless variable, is called the power coeffiient of a pump, Cp:

P

I, = Q7 'D7°P = oD’

= C;



Step 4b

Step 4c

Step 5
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Combine ({2, p, D) with flow rate Q to find the second pi group:
1—[2 — QaprCQ — (T—l)a(FT2L—4)b(L)C(L3T—1) — FOLOTO
After equating exponents, we now find a = —1, b = 0, and ¢ = —3. This second pi group

is called the fiw coeffiient  of a pump, Cp:

I, =0 "'’D30 = —0%3 —C,

Combine (), p, D) with viscosity w to find the third and last pi group:
I, = Q%°Du = (T~ HUFT’L ™ 4H*(L)(FTL™?) = F°L°T®
This time, a = —1,b = —1,and ¢ = —2; or [I; = M/(pQDZ), a sort of Reynolds number.

The original relation between six variables is now reduced to three dimensionless

groups:
P 9 M
=l == Ans.

o (QD3 ’ pQD2> s

Comment: These three are the classical coefficients used to correlate pump power in
Chap. 11.

EXAMPLE 54

At low velocities (laminar flow), the volume flow Q through a small-bore tube is a func-
tion only of the tube radius R, the fluid viscosity w, and the pressure drop per unit tube
length dp/dx. Using the pi theorem, find an appropriate dimensionless relationship.

Solution

Write the given relation and count variables:

d
o=f (R, M, dl) four variables (n = 4)
X

Make a list of the dimensions of these variables from Table 5.1 using the {MLT} system:

0 | R | " | dpldx
="y | (L} | (ML™'T™) | {(ML™?T™%)

There are three primary dimensions (M, L, T), hence j = 3. By trial and error we determine
that R, w, and dp/dx cannot be combined into a pi group. Then j =3, andn —j=4 —3 = 1.
There is only one pi group, which we find by combining Q in a power product with the
other three:
d C
I, = Raﬂb((jl) 0' = LML T~ Y ML 2T 23T Y
X

= M°L°T°
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Equate exponents:

Mass: b + ¢ =0
Length: a—b—2c+3=0
Time: —b—2c—1=0
Solving simultaneously, we obtain a = —4, b = 1, and ¢ = —1. Then

d =1l

I, = R‘W(—”) 0

dx

or i = const Ans.

= R ap/an

Since there is only one pi group, it must equal a dimensionless constant. This is as far as
dimensional analysis can take us. The laminar flow theory of Sec. 4.10 shows that the value
of the constant is —%.

EXAMPLE 5.5

Assume that the tip deflection 6 of a cantilever beam is a function of the tip load P, beam
length L, area moment of inertia 7, and material modulus of elasticity E; that is, 6 = f(P,
L, I, E). Rewrite this function in dimensionless form, and comment on its complexity and
the peculiar value of j.

Solution

List the variables and their dimensions:

1) | P | L | 1 | 18

w | ey | ow oy | oy

There are five variables (n = 5) and three primary dimensions (M, L, T), hence j = 3. But
try as we may, we cannot find any combination of three variables that does not form a pi
group. This is because {M} and {T} occur only in P and E and only in the same form,
{MT2}. Thus we have encountered a special case of j = 2, which is less than the number
of dimensions (M, L, T). To gain more insight into this peculiarity, you should rework the
problem, using the (F, L, T) system of dimensions. You will find that only {F} and {L}
occur in these variables, hence j = 2.

With j = 2, we select L and E as two variables that cannot form a pi group and then add
other variables to form the three desired pis:

I, = L°EPI' = (L)“ML T~ ?°(L*) = M°L°T°
from which, after equating exponents, we find that a = —4, b = 0, or I, = I/L*. Then
I, = LE*P' = (L)*WML'T>(MLT %) = M°L°T®
from which we find a = —2, b = —1, or I, = P/(EL?), and
I, = LYEPS' = (LML 'T~»’(L) = M°L°T°
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from which a = —1, b =0, or II; = 6/L. The proper dimensionless function is [I; =
fly, I1y), or

1) P I

sz E,F Ans. (])

This is a complex three-variable function, but dimensional analysis alone can take us no
further.

Comments: We can “improve” Eq. (1) by taking advantage of some physical reasoning,
as Langhaar points out [4, p. 91]. For small elastic deflections, 6 is proportional to load P
and inversely proportional to moment of inertia /. Since P and I occur separately in Eq. (1),
this means that I1; must be proportional to II, and inversely proportional to II;. Thus, for
these conditions,

4

0
— = (const) — —
L EL” I

3

6= t) ——
or (const) E

(€3

This could not be predicted by a pure dimensional analysis. Strength-of-materials theory
predicts that the value of the constant is 3.

The pi theorem method, just explained and illustrated, is often called the repeating
variable method of dimensional analysis. Select the repeating variables, add one more,
and you get a pi group. The writer likes it. This method is straightforward and sys-
tematically reveals all the desired pi groups. However, there are drawbacks: (1) All
pi groups contain the same repeating variables and might lack variety or effective-
ness, and (2) one must (sometimes laboriously) check that the selected repeating vari-
ables do not form a pi group among themselves (see Prob. P5.21).

Ipsen [S5] suggests an entirely different procedure, a step-by-step method that
obtains all of the pi groups at once, without any counting or checking. One simply
successively eliminates each dimension in the desired function by division or multi-
plication. Let us illustrate with the same classical drag function proposed in Eq. (5.1).
Underneath the variables, write out the dimensions of each quantity.

F = fen(L, v, P, ) (5.1)
{MLT?} (L} {(LTY% (ML} (ML 'T}

There are three dimensions, {MLT?}. Eliminate them successively by division or mul-
tiplication by a variable. Start with mass {M}. Pick a variable that contains mass and
divide it into all the other variables with mass dimensions. We select p, divide, and
rewrite the function (5.1):

L fcn(L, v, A ﬁ) (5.10)

p p
{L'T?) Ly Lt~y (ML} (LT

SThese two methods (the pi theorem versus Ipsen) are quite different. Both are useful and interesting.
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We did not divide into L or V, which do not contain {M}. Equation (5.1a) at first looks
strange, but it contains five distinct variables and the same information as Eq. (5.1).

We see that p is no longer important because no other variable contains {M}. Thus
discard p, and now there are only four variables. Next, eliminate time {7} by divid-
ing the time-containing variables by suitable powers of, say, V. The result is

o N
e fcn(L, XY pV) (5.1b)
{r’ Ly (L7 (L}

Now we see that V is no longer relevant since only V contains time {7}. Finally, elim-
inate {L} through division by, say, appropriate powers of L itself:

_F B
VD fcn</L’,' pVL> (5.1¢)
{1} {1}

Now L by itself is no longer relevant and so discard it also. The result is equivalent
to Eq. (5.2):

F I
5.0 fen| —— (5.2)
pV°L pVL

In Ipsen’s step-by-step method, we find the force coefficient is a function solely of
the Reynolds number. We did no counting and did not find j. We just successively
eliminated each primary dimension by division with the appropriate variables.

Recall Example 5.5, where we discovered, awkwardly, that the number of repeat-
ing variables was less than the number of primary dimensions. Ipsen’s method avoids
this preliminary check. Recall the beam-deflection problem proposed in Example 5.5
and the various dimensions:

8 = f(P, L I E)
{Ly {MLT™? (L} (L% (ML™'T?)

For the first step, let us eliminate {M} by dividing by E. We only have to divide into P:
P
6 = = L, I,
(%
o W Ly L'y

We see that we may discard E as no longer relevant, and the dimension {7} has van-
ished along with {M}. We need only eliminate {L} by dividing by, say, powers of L
itself:

) P 1
L= f(ﬁ & F)
{1} {1y L}y {1}

Discard L itself as now irrelevant, and we obtain Answer (1) to Example 5.5:

o _. (P 1
S (B L
L MEer *
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Ipsen’s approach is again successful. The fact that {M} and {7} vanished in the same
division is proof that there are only two repeating variables this time, not the three
that would be inferred by the presence of {M}, {L}, and {T7}.

EXAMPLE 5.6

The leading-edge aerodynamic moment M,z on a supersonic airfoil is a function of its chord
length C, angle of attack o, and several air parameters: approach velocity V, density p, speed
of sound a, and specific heat ratio k£ (Fig. E5.6). There is a very weak effect of air viscosity,
which is neglected here.

ES.6

Use Ipsen’s method to rewrite this function in dimensionless form.

Solution

Write out the given function and list the variables’ dimensions {MLT} underneath:

M;r; = fen(C, a, V, JoX a, k)
(ML?IT? Ly (1 {Wry MLy LTy {1

Two of them, « and k, are already dimensionless. Leave them alone; they will be pi
groups in the final function. You can eliminate any dimension. We choose mass {M} and
divide by p:

M
—£ =fen(C, a. V. ¥ a k)

p
(LT Ly {1} {L/T) {L/ITy {1}

Recall Ipsen’s rules: Only divide into variables containing mass, in this case only M;p,
and then discard the divisor, p. Now eliminate time {7} by dividing by appropriate pow-
ers of a:

M LE

5 = fcn(C, a, X, od k)
pa a
L’ {3 {1 {1
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5.4 Nondimensionalization
of the Basic Equations

Finally, eliminate {L} on the left side by dividing by C*:

p]gz]“é = fcn(,@‘,' «, ‘g/, k)
{1} {1 {1

We end up with four pi groups and recognize V/a as the Mach number, Ma. In aerody-
namics, the dimensionless moment is often called the moment coeffiient , C,;. Thus our final
result could be written in the compact form

Cy = fen(a, Ma, k) Ans.

Comments: Our analysis is fine, but experiment and theory and physical reasoning all indi-
cate that M, varies more strongly with V than with a. Thus aerodynamicists commonly
define the moment coefficient as Cy; = M, /(pV>C?) or something similar. We will study
the analysis of supersonic forces and moments in Chap. 9.

We could use the pi theorem method of the previous section to analyze problem after
problem after problem, finding the dimensionless parameters that govern in each case.
Textbooks on dimensional analysis [for example, 5] do this. An alternative and very pow-
erful technique is to attack the basic equations of flow from Chap. 4. Even though these
equations cannot be solved in general, they will reveal basic dimensionless parameters,
such as the Reynolds number, in their proper form and proper position, giving clues to
when they are negligible. The boundary conditions must also be non-dimensionalized.

Let us briefly apply this technique to the incompressible flow continuity and
momentum equations with constant viscosity:

Continuity: V-V=0 (5.21a)
. dv )
Navier-Stokes: P pg — Vp + uVv (5.21b)

Typical boundary conditions for these two equations are (Sect. 4.6)

Fixed solid surface: V=0

Inlet or outlet: Known V, p (5.22)
. _ d_n _ —1 —1

Free surface, z = n: w P=p,— YR, +R )

dr
We omit the energy equation (4.75) and assign its dimensionless form in the prob-
lems (Prob. P5.43).

Equations (5.21) and (5.22) contain the three basic dimensions M, L, and 7. All

variables p, V, x, y, z, and ¢ can be nondimensionalized by using density and two
reference constants that might be characteristic of the particular fluid flow:

Reference velocity = U Reference length = L

For example, U may be the inlet or upstream velocity and L the diameter of a body
immersed in the stream.
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Now define all relevant dimensionless variables, denoting them by an asterisk:

Vv
V*=E V* =LV
X y Z R
S ) L 6.2)
=tV Pt psz
L pU?

All these are fairly obvious except for p*, where we have introduced the piezomet-
ric pressure, assuming that z is up. This is a hindsight idea suggested by Bernoulli’s
equation (3.54).

Since p, U, and L are all constants, the derivatives in Egs. (5.21) can all be han-
dled in dimensionless form with dimensional coefficients. For example,

ou_ U _ U wr
ox  d(Lx*) L ox*
Substitute the variables from Eqs. (5.23) into Egs. (5.21) and (5.22) and divide

through by the leading dimensional coefficient, in the same way as we handled
Eq. (5.12). Here are the resulting dimensionless equations of motion:

Continuity: V#.V* =0 (5.24a)

dV#*
dr*

Momentum: = - Wik 4+ —Eyryn (5.24b)
pUL

The dimensionless boundary conditions are:

Fixed solid surface: V*=0
Inlet or outlet: Known V*, p*
dn*
F face, z* = n*: P == 5.25
ree surface, z ] w e ( )

L Y
P, 8L ., _

p* =

=0 T pUZL(Rj’;"+R§’f’1)

These equations reveal a total of four dimensionless parameters, one in the Navier-
Stokes equation and three in the free-surface-pressure boundary condition.

In the continuity equation there are no parameters. The Navier-Stokes equation contains
one, generally accepted as the most important parameter in fluid mechanics:

UL
Reynolds number Re = P
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Compressibility Parameters

It is named after Osborne Reynolds (1842—-1912), a British engineer who first proposed
it in 1883 (Ref. 4 of Chap. 6). The Reynolds number is always important, with or with-
out a free surface, and can be neglected only in flow regions away from high-velocity
gradients—for example, away from solid surfaces, jets, or wakes.

The no-slip and inlet-exit boundary conditions contain no parameters. The free-
surface-pressure condition contains three:

Pa
pU?

Euler number (pressure coefficient) Eu =

This is named after Leonhard Euler (1707-1783) and is rarely important unless the
pressure drops low enough to cause vapor formation (cavitation) in a liquid. The Euler
number is often written in terms of pressure differences: Eu = Ap/(pU?). If Ap
involves vapor pressure p,, it is called the cavitation number Ca = (p, — p)/(pU?).
The second free-surface parameter is much more important:

2

Froude number Fr = —

gL

It is named after William Froude (1810-1879), a British naval architect who, with his

son Robert, developed the ship-model towing-tank concept and proposed similarity

rules for free-surface flows (ship resistance, surface waves, open channels). The

Froude number is the dominant effect in free-surface flows and is totally unimportant

if there is no free surface. Chapter 10 investigates Froude number effects in detail.
The final free-surface parameter is

pU’L
Y

It is named after Moritz Weber (1871-1951) of the Polytechnic Institute of Berlin,
who developed the laws of similitude in their modern form. It was Weber who named
Re and Fr after Reynolds and Froude. The Weber number is important only if it is of
order unity or less, which typically occurs when the surface curvature is comparable
in size to the liquid depth, such as in droplets, capillary flows, ripple waves, and very
small hydraulic models. If We is large, its effect may be neglected.

If there is no free surface, Fr, Eu, and We drop out entirely, except for the pos-
sibility of cavitation of a liquid at very small Eu. Thus, in low-speed viscous flows
with no free surface, the Reynolds number is the only important dimensionless
parameter.

Weber number We =

In high-speed flow of a gas there are significant changes in pressure, density, and tem-
perature that must be related by an equation of state such as the perfect-gas law,
Eq. (1.10). These thermodynamic changes introduce two additional dimensionless
parameters mentioned briefly in earlier chapters:

U
Mach number Ma = o Specific-heat ratio k = &

Cy



Oscillating Flows

Other Dimensionless Parameters
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The Mach number is named after Ernst Mach (1838-1916), an Austrian physicist.
The effect of k is only slight to moderate, but Ma exerts a strong effect on com-
pressible flow properties if it is greater than about 0.3. These effects are studied in
Chap. 9.

If the flow pattern is oscillating, a seventh parameter enters through the inlet bound-
ary condition. For example, suppose that the inlet stream is of the form

u = U cos wt

Nondimensionalization of this relation results in

u wL
i u* = COS<_t*>
U U

The argument of the cosine contains the new parameter
oL
Strouhal number St = 572

The dimensionless forces and moments, friction, and heat transfer, and so on of such
an oscillating flow would be a function of both Reynolds and Strouhal numbers. This
parameter is named after V. Strouhal, a German physicist who experimented in 1878
with wires singing in the wind.

Some flows that you might guess to be perfectly steady actually have an oscil-
latory pattern that is dependent on the Reynolds number. An example is the peri-
odic vortex shedding behind a blunt body immersed in a steady stream of veloc-
ity U. Figure 5.2a shows an array of alternating vortices shed from a circular
cylinder immersed in a steady crossflow. This regular, periodic shedding is called
a Kd rmd n vortex streetafter T. von Kdma, who explained it theoretically in
1912. The shedding occurs in the range 10° < Re < 107, with an average
Strouhal number wd/(2mwU) = 0.21. Figure 5.2b0 shows measured shedding
frequencies.

Resonance can occur if a vortex shedding frequency is near a body’s structural
vibration frequency. Electric transmission wires sing in the wind, undersea mooring
lines gallop at certain current speeds, and slender structures flutter at critical wind or
vehicle speeds. A striking example is the disastrous failure of the Tacoma Narrows
suspension bridge in 1940, when wind-excited vortex shedding caused resonance with
the natural torsional oscillations of the bridge. The problem was magnified by the
bridge deck nonlinear stiffness, which occurred when the hangers went slack during
the oscillation.

We have discussed seven important parameters in fluid mechanics, and there are oth-
ers. Four additional parameters arise from nondimensionalization of the energy equa-
tion (4.75) and its boundary conditions. These four (Prandtl number, Eckert number,
Grashof number, and wall temperature ratio) are listed in Table 5.2 just in case you
fail to solve Prob. P5.43. Another important and perhaps surprising parameter is the
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Fig. 5.2 Vortex shedding from a
circular cylinder: (a) vortex street
behind a circular cylinder (Courtesy
of U.S. Navy); (b) experimental
shedding frequencies (data from
Refs. 25 and 26).
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(b)

wall roughness ratio €/L (in Table 5.2).° Slight changes in surface roughness have a
striking effect in the turbulent flow or high-Reynolds-number range, as we shall see
in Chap. 6 and in Fig. 5.3.

This book is primarily concerned with Reynolds-, Mach-, and Froude-number
effects, which dominate most flows. Note that we discovered these parameters (except
€/L) simply by nondimensionalizing the basic equations without actually solving them.

SRoughness is easy to overlook because it is a slight geometric effect that does not appear in the
equations of motion. It is a boundary condition that one might forget.



Table 5.2 Dimensionless Groups in

Fluid Mechanics

5.4 Nondimensionalization of the Basic Equations

317

Qualitative ratio

Parameter Defiition of effects Importance
UL Inertia
Reynolds number Re = e ﬁ Almost always
" iscosity
U Flow speed
Mach number Ma = — Sound speed sf;eed Compressible flow
a u
U? Inertia
Froude number Fr=— - Free-surface flow
gL Gravity
UL Inertia
Weber number We = i P EE—— Free-surface flow
Y Surface tension
U Flow velocity
Rossby number Ro = - Geophysical flows
v Qearn L Coriolis effect Py v
— Pressure
Cavitation number Ca = i Zp L 7u Cavitation
(Euler number) pU Inertia
) Dissipation .
Prandtl number Pr = % ﬁ Heat convection
onduction
U’ Kineti
Eckert number Ec = — SIICHC enetey Dissipation
¢, Ty Enthalpy
Enthal
Specific-heat ratio k= & m Compressible flow
CU
wL Oscillation .
Strouhal number St = s Wspeed Oscillating flow
€ Wall roughness
Roughness ratio 7 Tkilgth Turbulent, rough walls
y
ATgL*p? Buoyanc
Grashof number Gr = B g2 P Vi Y 'ty Natural convection
7 iscosity
ATgL*p? Buoyanc
Rayleigh number Ra = PATg kp i Vi Y ‘ty Natural convection
W iscosity
. T, Wall temperature
Temperature ratio — ————  Heat transfer
T, Stream temperature
— Do Static pressure . .
Pressure coefficient C, = L pi Aerodynamics, hydrodynamics
! 1pU? Dynamic pressure
L Lift force
Lift coefficient C, = T A Dvnamic force Aerodynamics, hydrodynamics
2P y
D Drag force
Drag coefficient Cp = A m Aerodynamics, hydrodynamics
2P ynami
h Friction head loss
Friction factor f== L - Pipe flow
(V12¢)(L/d) Velocity head
Twall _Wall shear stress

Skin friction coefficient

AT

Dynamic pressure

Boundary layer flow
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Fig. 5.3 The proof of practical
dimensional analysis: drag coeffi-
cients of a cylinder and sphere:
(a) drag coefficient of a smooth
cylinder and sphere (data from
many sources); (b) increased
roughness causes earlier transition
to a turbulent boundary layer.

A Successful Application

4 Cylinder
length effect
Transition to turbulent (104 < Re < 10%)
boundary layer
3 vd - o
Cp ) 1.20
40 0.98
20 0.91
2= 10 082
5 0.74
. . . 3 0.72
Cylinder (two-dimensional) > 0.68
1— 1 0.64

10 102 103 104 10° 100 107
puUd
Re;= —
u
(a)
15
Cylinder:
— € _
L0 £=002 L_.
Cp oy 0009 Z
o 0.007
05— 0.004
B p Smooth
0.0005
0.3 |
104 103 106
Red
(b)

If the reader is not satiated with the 19 parameters given in Table 5.2, Ref. 29 con-
tains a list of over 300 dimensionless parameters in use in engineering.

Dimensional analysis is fun, but does it work? Yes, if all important variables are
included in the proposed function, the dimensionless function found by dimensional
analysis will collapse all the data onto a single curve or set of curves.

An example of the success of dimensional analysis is given in Fig. 5.3 for the
measured drag on smooth cylinders and spheres. The flow is normal to the axis of
the cylinder, which is extremely long, L/d — . The data are from many sources, for
both liquids and gases, and include bodies from several meters in diameter down to
fine wires and balls less than 1 mm in size. Both curves in Fig. 5.3a are entirely
experimental; the analysis of immersed body drag is one of the weakest areas of
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modern fluid mechanics theory. Except for digital computer calculations, there is lit-
tle theory for cylinder and sphere drag except creeping fiw, Re < 1.

The Reynolds number of both bodies is based on diameter, hence the notation Re,,.
But the drag coefficients are defined differently:

drag .
) cylinder
2pU"Ld
Cp = (5.26)
drag h
T—>51 5 Sphere
1pUmd® P

They both have a factor j because the term 3pU? occurs in Bernoulli’s equation, and
both are based on the projected area—that is, the area one sees when looking toward
the body from upstream. The usual definition of Cp, is thus

drag

Cp = 5.27
P 3pUP(projected area) (5.27)

However, one should carefully check the definitions of Cp, Re, and the like before
using data in the literature. Airfoils, for example, use the planform area.

Figure 5.3a is for long, smooth cylinders. If wall roughness and cylinder length
are included as variables, we obtain from dimensional analysis a complex three-
parameter function:

Cp = f<Red, fl’ 5) (5.28)
To describe this function completely would require 1000 or more experiments or CFD
results. Therefore it is customary to explore the length and roughness effects sepa-
rately to establish trends.

The table with Fig. 5.3a shows the length effect with zero wall roughness. As
length decreases, the drag decreases by up to 50 percent. Physically, the pressure is
“relieved” at the ends as the flow is allowed to skirt around the tips instead of deflect-
ing over and under the body.

Figure 5.3b shows the effect of wall roughness for an infinitely long cylinder. The
sharp drop in drag occurs at lower Re, as roughness causes an earlier transition to a
turbulent boundary layer on the surface of the body. Roughness has the same effect
on sphere drag, a fact that is exploited in sports by deliberate dimpling of golf balls
to give them less drag at their flight Re, = 10°. See Fig. D5.2.

Figure 5.3 is a typical experimental study of a fluid mechanics problem, aided by
dimensional analysis. As time and money and demand allow, the complete three-
parameter relation (5.28) could be filled out by further experiments.

EXAMPLE 5.7

A smooth cylinder, 1 cm in diameter and 20 cm long, is tested in a wind tunnel for a cross-
flow of 45 m/s of air at 20°C and 1 atm. The measured drag is 2.2 = 0.1 N. (a) Does this
data point agree with the data in Fig. 5.3? (b) Can this data point be used to predict the
drag of a chimney 1 m in diameter and 20 m high in winds at 20°C and 1 atm? If so, what
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is the recommended range of wind velocities and drag forces for this data point? (c¢) Why
are the answers to part (b) always the same, regardless of the chimney height, as long as
L = 20d?

Solution

(@) For air at 20°C and 1 atm, take p = 1.2 kg/m® and u = 1.8 E—5 kg/(m-s). Since the
test cylinder is short, L/d = 20, it should be compared with the tabulated value Cp, = 0.91
in the table to the right of Fig. 5.3a. First calculate the Reynolds number of the test
cylinder:

_pld (12 kg/m3)(45 m/s)(0.01 m)
1.8E—=5 kg/(m — s)

Re, = 30,000

Yes, this is in the range 10* < Re < 10° listed in the table. Now calculate the test drag
coefficient:

F 3 22N
(1/2)pULd — (1/2)(1.2 kg/m>)(45 m/s)*(0.2 m)(0.01 m)

= 0.905

CD,test =

Yes, this is close, and certainly within the range of *£5 percent stated by the test results.

Ans. (a)
(b) Since the chimney has L/d = 20, we can use the data if the Reynolds number range is
correct:

104 < (12 kg/m3)Uchimney(1 m)
1.8 E=5kg/(m - s)

<10° if 0.15 ? < Uhimney < 1.5?

These are negligible winds, so the test data point is not very useful. Ans. (b)
The drag forces in this range are also negligibly small:

P 5 1.2 kg/m? )
Fuin = Coy Unind = (09D| === )(0.15 m/5)*20 m)(1 m) = 025 N

P, 1.2 kg/m® 3
Froax = CDEUmade = (0.91)(#)(1.5 m/s)“(20 m)(1 m) = 25 N
(c) Try this yourself. Choose any 20:1 size for the chimney, even something silly like
20 mm:1 mm. You will get the same results for U and F as in part (b) above. This is because
the product Ud occurs in Re; and, if L = 20d, the same product occurs in the drag force.
For example, for Re = 104,

104 2
vd = 104% then F = CpZULd = Cp - UP(20d)d = 20Cp5(Ud)’ = ZOCDg( pM)

The answer is always F;, = 0.25 N. This is an algebraic quirk that seldom occurs.

EXAMPLE 5.8

Telephone wires are said to “sing” in the wind. Consider a wire of diameter 8 mm. At what
sea-level wind velocity, if any, will the wire sing a middle C note?
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Solution

For sea-level air take » = 1.5 E—5 m?/s. For nonmusical readers, middle C is 262 Hz. Mea-
sured shedding rates are plotted in Fig. 5.2b. Over a wide range, the Strouhal number is
approximately 0.2, which we can take as a first guess. Note that (w/27) = f, the shedding
frequency. Thus

fd (26257 )(0.008 m)
U U -

St = 0.2

U~1052
S

Now check the Reynolds number to see if we fall into the appropriate range:

Ud  (10.5 m/s)(0.008 m)
Red === 7
v 1.5E—5m/s

~ 5600

In Fig. 5.2b, at Re = 5600, maybe St is a little higher, at about 0.21. Thus a slightly
improved estimate is

Uying = (262)(0.008)/(0.21) = 10.0 m/s Ans.

So far we have learned about dimensional homogeneity and the pi theorem method,
using power products, for converting a homogeneous physical relation to dimension-
less form. This is straightforward mathematically, but certain engineering difficulties
need to be discussed.

First, we have more or less taken for granted that the variables that affect the process
can be listed and analyzed. Actually, selection of the important variables requires con-
siderable judgment and experience. The engineer must decide, for example, whether
viscosity can be neglected. Are there significant temperature effects? Is surface tension
important? What about wall roughness? Each pi group that is retained increases the
expense and effort required. Judgment in selecting variables will come through prac-
tice and maturity; this book should provide some of the necessary experience.

Once the variables are selected and the dimensional analysis is performed, the
experimenter seeks to achieve similarity between the model tested and the prototype
to be designed. With sufficient testing, the model data will reveal the desired dimen-
sionless function between variables:

Hl =f(H2, H3, . Hk) (529)

With Eq. (5.29) available in chart, graphical, or analytical form, we are in a position
to ensure complete similarity between model and prototype. A formal statement would
be as follows:

Flow conditions for a model test are completely similar if all relevant dimension-
less parameters have the same corresponding values for the model and the
prototype.

This follows mathematically from Eq. (5.29). If II,,, = 11, II;,, = II5,, and so
forth, Eq. (5.29) guarantees that the desired output II;,, will equal II,,,. But this is
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Geometric Similarity

Fig. 5.4 Geometric similarity in
model testing: (a) prototype;
(b) one-tenth-scale model.

easier said than done, as we now discuss. There are specialized texts on model
testing [30-32].

Instead of complete similarity, the engineering literature speaks of particular types
of similarity, the most common being geometric, kinematic, dynamic, and thermal.
Let us consider each separately.

Geometric similarity concerns the length dimension {L} and must be ensured before
any sensible model testing can proceed. A formal definition is as follows:

A model and prototype are geometrically similar if and only if all body dimensions
in all three coordinates have the same linear scale ratio.

Note that all length scales must be the same. It is as if you took a photograph of the
prototype and reduced it or enlarged it until it fitted the size of the model. If the model
is to be made one-tenth the prototype size, its length, width, and height must each be
one-tenth as large. Not only that, but also its entire shape must be one-tenth as large,
and technically we speak of homologous points, which are points that have the same
relative location. For example, the nose of the prototype is homologous to the nose
of the model. The left wingtip of the prototype is homologous to the left wingtip of
the model. Then geometric similarity requires that all homologous points be related
by the same linear scale ratio. This applies to the fluid geometry as well as the model
geometry.

All angles are preserved in geometric similarity. All flow directions are preserved.
The orientations of model and prototype with respect to the surroundings must be
identical.

Figure 5.4 illustrates a prototype wing and a one-tenth-scale model. The model
lengths are all one-tenth as large, but its angle of attack with respect to the free stream
is the same for both model and prototype: 10° not 1°. All physical details on the model
must be scaled, and some are rather subtle and sometimes overlooked:

1. The model nose radius must be one-tenth as large.
2. The model surface roughness must be one-tenth as large.

/\ Homologous
4 <——— .
points

— a

10° 4m

10°
‘I>-I>

V’/\gm\7/ t Vo Ao/

(a) (b)



Fig. 5.5 Geometric similarity and
dissimilarity of flows: (a) similar;
(b) dissimilar.

Kinematic Similarity
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(b)

3. If the prototype has a 5-mm boundary layer trip wire 1.5 m from the leading
edge, the model should have a 0.5-mm trip wire 0.15 m from its leading edge.

4. If the prototype is constructed with protruding fasteners, the model should have
homologous protruding fasteners one-tenth as large.

And so on. Any departure from these details is a violation of geometric similarity and
must be justified by experimental comparison to show that the prototype behavior was
not significantly affected by the discrepancy.

Models that appear similar in shape but that clearly violate geometric similarity
should not be compared except at your own risk. Figure 5.5 illustrates this point. The
spheres in Fig. 5.5a are all geometrically similar and can be tested with a high expec-
tation of success if the Reynolds number, Froude number, or the like is matched. But
the ellipsoids in Fig. 5.5b merely look similar. They actually have different linear scale
ratios and therefore cannot be compared in a rational manner, even though they may
have identical Reynolds and Froude numbers and so on. The data will not be the same
for these ellipsoids, and any attempt to “compare” them is a matter of rough engi-
neering judgment.

Kinematic similarity requires that the model and prototype have the same length scale
ratio and the same time scale ratio. The result is that the velocity scale ratio will be
the same for both. As Langhaar [4] states it:

The motions of two systems are kinematically similar if homologous particles lie
at homologous points at homologous times.

Length scale equivalence simply implies geometric similarity, but time scale equiva-
lence may require additional dynamic considerations such as equivalence of the
Reynolds and Mach numbers.

One special case is incompressible frictionless flow with no free surface, as sketched
in Fig. 5.6a. These perfect-fluid flows are kinematically similar with independent length
and time scales, and no additional parameters are necessary (see Chap. 8 for further
details).
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Fig. 5.6 Frictionless low-speed
flows are kinematically similar:
(a) Flows with no free surface are
kinematically similar with
independent length and time scale
ratios; (b) free-surface flows are
kinematically similar with length
and time scales related by the
Froude number.
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(b)

Frictionless flows with a free surface, as in Fig. 5.6b, are kinematically similar if
their Froude numbers are equal:

(5.30)
Note that the Froude number contains only length and time dimensions and hence is

a purely kinematic parameter that fixes the relation between length and time. From
Eq. (5.30), if the length scale is

L, =alL, (5.31)
where « is a dimensionless ratio, the velocity scale is
1% L\
== (—) = Va (5.32)
V[’ L[’



Dynamic Similarity

Fig. 5.7 Dynamic similarity in
sluice gate flow. Model and proto-
type yield identical homologous
force polygons if the Reynolds and
Froude numbers are the same cor-
responding values: (a) prototype;
(b) model.
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and the time scale is

T, L,/V,
T mlom 5.33
Tp LP/VP Ve ( )

These Froude-scaling kinematic relations are illustrated in Fig. 5.6b for wave motion
modeling. If the waves are related by the length scale «, then the wave period, prop-
agation speed, and particle velocities are related by Va.

If viscosity, surface tension, or compressibility is important, kinematic similarity
depends on the achievement of dynamic similarity.

Dynamic similarity exists when the model and the prototype have the same length
scale ratio, time scale ratio, and force scale (or mass scale) ratio. Again geometric
similarity is a first requirement; without it, proceed no further. Then dynamic simi-
larity exists, simultaneous with kinematic similarity, if the model and prototype force
and pressure coefficients are identical. This is ensured if

1. For compressible flow, the model and prototype Reynolds number and Mach
number and specific-heat ratio are correspondingly equal.

2. For incompressible flow
a. With no free surface: model and prototype Reynolds numbers are equal.

b. With a free surface: model and prototype Reynolds number, Froude
number, and (if necessary) Weber number and cavitation number are corre-
spondingly equal.

Mathematically, Newton’s law for any fluid particle requires that the sum of the pres-
sure force, gravity force, and friction force equal the acceleration term, or inertia force,

F,+F, +F=F,

The dynamic similarity laws listed above ensure that each of these forces will be in
the same ratio and have equivalent directions between model and prototype. Figure 5.7

AvA

N

(a) (b)
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Discrepancies in Water
and Air Testing

Fig. 5.8 Reynolds-number extrapo-
lation, or scaling, of hydraulic data
with equal Froude numbers.

shows an example for flow through a sluice gate. The force polygons at homologous
points have exactly the same shape if the Reynolds and Froude numbers are equal
(neglecting surface tension and cavitation, of course). Kinematic similarity is also
ensured by these model laws.

The perfect dynamic similarity shown in Fig. 5.7 is more of a dream than a reality
because true equivalence of Reynolds and Froude numbers can be achieved only by
dramatic changes in fluid properties, whereas in fact most model testing is simply
done with water or air, the cheapest fluids available.

First consider hydraulic model testing with a free surface. Dynamic similarity
requires equivalent Froude numbers, Eq. (5.30), and equivalent Reynolds numbers:

VoLl VL,

(5.34)
v

v,

m P

But both velocity and length are constrained by the Froude number, Egs. (5.31) and
(5.32). Therefore, for a given length scale ratio «, Eq. (5.34) is true only if
1% L,V,

I _ZmVm _ N = o (5.35)

v, LV,

For example, for a one-tenth-scale model, &« = 0.1 and a*? = 0.032. Since v, is
undoubtedly water, we need a fluid with only 0.032 times the kinematic viscosity of
water to achieve dynamic similarity. Referring to Table 1.4, we see that this is impossi-
ble: Even mercury has only one-ninth the kinematic viscosity of water, and a mercury
hydraulic model would be expensive and bad for your health. In practice, water is used
for both the model and the prototype, and the Reynolds number similarity (5.34) is
unavoidably violated. The Froude number is held constant since it is the dominant param-
eter in free-surface flows. Typically the Reynolds number of the model flow is too small
by a factor of 10 to 1000. As shown in Fig. 5.8, the low-Reynolds-number model data
are used to estimate by extrapolation the desired high-Reynolds-number prototype data.
As the figure indicates, there is obviously considerable uncertainty in using such an
extrapolation, but there is no other practical alternative in hydraulic model testing.

Range Range
of Re,, of Re,,

V Power-law

_ - extrapolation
—

-\ Uncertainty

in prototype
data estimate

log Cp

10° 100 107 108

log Re ——
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Second, consider aerodynamic model testing in air with no free surface. The
important parameters are the Reynolds number and the Mach number. Equation (5.34)
should be satisfied, plus the compressibility criterion

V, V,
Z2=L (5.36)

a, a,

Elimination of V,,/V,, between (5.34) and (5.36) gives

L O (5.37)
v, L, a,

Since the prototype is no doubt an air operation, we need a wind-tunnel fluid of low
viscosity and high speed of sound. Hydrogen is the only practical example, but clearly
it is too expensive and dangerous. Therefore wind tunnels normally operate with air
as the working fluid. Cooling and pressurizing the air will bring Eq. (5.37) into better
agreement but not enough to satisfy a length scale reduction of, say, one-tenth.
Therefore Reynolds number scaling is also commonly violated in aerodynamic testing,
and an extrapolation like that in Fig. 5.8 is required here also.

There are specialized monographs devoted entirely to wind tunnel testing: low
speed [38], high speed [39], and a detailed general discussion [40]. The following
example illustrates modeling discrepancies in aeronautical testing.

EXAMPLE 5.9

A prototype airplane, with a chord length of 1.6 m, is to fly at Ma = 2 at 10 km standard
altitude. A one-eighth scale model is to be tested in a helium wind tunnel at 100°C and
1 atm. Find the helium test section velocity that will match (a) the Mach number or () the
Reynolds number of the prototype. In each case criticize the lack of dynamic similarity.
(c) What high pressure in the helium tunnel will match both the Mach and Reynolds num-
bers? (d) Why does part (c) still not achieve dynamic similarity?

Solution

For helium, from Table A4, R = 2077 m*(s*-K), k = 1.66, and estimate gy, ~ 2.32 E—5 kg/
(m - s) from the power-law, n = 0.67, in the table. (a) Calculate the helium speed of sound
and velocity:

ane = VIRD e = V(1.66)(2077 m¥s*K) X (373 K) = 1134 m/s

v, 1%
Maair = MaHe =20 = 15 = —EE
apge 1134 m/s
Vi = 2268— Ans. (@)
S

For dynamic similarity, the Reynolds numbers should also be equal. From Table A.6 at an
altitude of 10,000 m, read py, = 0.4125 kg/m’>, a;, = 299.5 m/s, and estimate u,;, ~ 1.48
E—5 kg/m - s from the power-law, n = 0.7, in Table A.4. The air velocity is V,;, = (Ma)(ay;,)
= 2(299.5) = 599 m/s. The model chord length is (1.6 m)/8 = 0.2 m. The helium density
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is pe = (/R = (101,350 Pa)/[(2077 m*/s* K)(373 K)] = 0.131 kg/m>. Now calculate
the two Reynolds numbers:

vC 0.4125 kg/m>)(599 m/s)(1.6
R = 2oe| = gm )N m/s)16m) _ 56 6 g6
: " 1.48 E—5 kg/(m - 5)
131 kg/m>)(2268 2
Reep. = pVC _ (0.131 kg/m™)( m/s)(0.2 m) — 256 E6
’ He 232 E=5kg/(m-s)

The model Reynolds number is 10 times less than the prototype. This is typical when using
small-scale models. The test results must be extrapolated for Reynolds number effects.
(b) Now ignore Mach number and let the model Reynolds number match the prototype:

(0.131 kg/m*)Vige(0.2 m)

e = Reyir 232E—5kg/(m - s)

m
Vie = 23,600; Ans. (b)

This is ridiculous: a hypersonic Mach number of 21, suitable for escaping from the earth’s
gravity. One should match the Mach numbers and correct for a lower Reynolds number.
(¢) Match both Reynolds and Mach numbers by increasing the helium density:

Ma matches if

m
Vie = 2268 N
Then
2268 m/s)(0.2
Rey, = 26.6 E6 = 2l (02 m)
232E-5kg/(m-s)
Solve for

k
PHe = 1.36§ Pue = PRT | = (1.36)(2077)(373) = 1.05 E6 Pa Ans. (c)

A match is possible if we increase the tunnel pressure by a factor of ten, a daunting task.
(d) Even with Ma and Re matched, we are szill not dynamically similar because the two gases
have different specific heat ratios: kg, = 1.66 and k,;, = 1.40. This discrepancy will cause
substantial differences in pressure, density, and temperature throughout supersonic flow.

Figure 5.9 shows a hydraulic model of the Bluestone Lake Dam in West Virginia.
The model itself is located at the U.S. Army Waterways Experiment Station in
Vicksburg, MS. The horizontal scale is 1:65, which is sufficient that the vertical scale
can also be 1:65 without incurring significant surface tension (Weber number) effects.
Velocities are scaled by the Froude number. However, the prototype Reynolds num-
ber, which is of order 1E7, cannot be matched here. The engineers set the Reynolds
number at about 2E4, high enough for a reasonable approximation of prototype tur-
bulent flow viscous effects. Note the intense turbulence below the dam. The down-
stream bed, or apron, of a dam must be strengthened structurally to avoid bed erosion.
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Fig. 5.9 Hydraulic model of the Bluestone Lake Dam on the New River near Hinton, West Virginia. The model scale is 1:65
both vertically and horizontally, and the Reynolds number, though far below the prototype value, is set high enough for the
flow to be turbulent. (Courtesy of the U.S. Army Corps of Engineers Waterways Experiment Station.)

For hydraulic models of larger scale, such as harbors, estuaries, and embayments,
geometric similarity may be violated of necessity. The vertical scale will be distorted
to avoid Weber number effects. For example, the horizontal scale may be 1:1000,
while the vertical scale is only 1:100. Thus the model channel may be deeper rela-
tive to its horizontal dimensions. Since deeper passages flow more efficiently, the
model channel bottom may be deliberately roughened to create the friction level
expected in the prototype.

EXAMPLE 5.10

The pressure drop due to friction for flow in a long smooth pipe is a function of average
flow velocity, density, viscosity, and pipe length and diameter: Ap = fen(V, p, u, L, D). We
wish to know how Ap varies with V. (a) Use the pi theorem to rewrite this function in
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dimensionless form. (b) Then plot this function, using the following data for three pipes and
three fluids:

D, cm L, m 0, m*/h Ap, Pa p, kg/m® M, kg/(m - s) V, m/s*
1.0 5.0 0.3 4,680 6807+ 2.92 E-4% 1.06
1.0 7.0 0.6 22,300 6807 2.92 E-47F 2.12
1.0 9.0 1.0 70,800 6807 2.92 E-47 3.54
2.0 4.0 1.0 2,080 998 0.0010% 0.88
2.0 6.0 2.0 10,500 998 0.0010% 1.77
2.0 8.0 3.1 30,400 998 0.0010% 2.74
3.0 3.0 0.5 540 13,5508 1.56 E-3§ 0.20
3.0 4.0 1.0 2,480 13,5508 1.56 E-3§ 0.39
3.0 5.0 1.7 9,600 13,5508 1.56 E-3§ 0.67

*V = QIA, A = wD*4.

fGasoline.

FWater.

§Mercury.

(c) Suppose it is further known that Ap is proportional to L (which is quite true for long pipes
with well-rounded entrances). Use this information to simplify and improve the pi theorem
formulation. Plot the dimensionless data in this improved manner and comment on the results.

Solution

There are six variables with three primary dimensions involved {MLT}. Therefore we expect
that j = 6 — 3 = 3 pi groups. We are correct, for we can find three variables that do not
form a pi product, for example, (p, V, L). Carefully select three (j) repeating variables, but
not including Ap or V, which we plan to plot versus each other. We select (p, u, D), and
the pi theorem guarantees that three independent power-product groups will occur:

I = p'u’D Ap T = p'uD'V Ty = p*u'"D'L
_ pD’Ap

or H]— /.L2 HZ:T H’;:B

We have omitted the algebra of finding (a, b, c, d, e, f, g, h, i) by setting all exponents to
zero M 0, LO, T°. Therefore we wish to plot the dimensionless relation

pD* Ap (pVD L)
>— = fen| ——, —
i nw D

Ans. (a)

We plot I1; versus II, with II; as a parameter. There will be nine data points. For exam-
ple, the first row in the data here yields
pD* Ap _ (680)(0.01)*(4680)
w? (2.92 E-4)?
pVD _ (680)(1.06)(0.01)
o 2.92E-+4

= 3.73E9

= 24,700 L_ 500
D

The nine data points are plotted as the open circles in Fig. 5.10. The values of L/D are
listed for each point, and we see a significant length effect. In fact, if we connect the only
two points that have the same L/D (= 200), we could see (and cross-plot to verify) that Ap
increases linearly with L, as stated in the last part of the problem. Since L occurs only in



Fig. 5.10 Two different correlations
of the data in Example 5.10: Open
circles when plotting pD? Ap/u*
versus Rep, L/D is a parameter;
once it is known that Ap is propor-
tional to L, a replot (solid circles)
of pD? Ap/(Lu?) versus Rep,
collapses into a single power-law
curve.
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[13 = L/D, the function II; = fen(Il,, I13) must reduce to [1, = (L/D) fen(1l,), or simply a
function involving only two parameters:

pD? Ap <pVD

5 = fen| ——

L ®

) flow in a long pipe Ans. (¢)

We now modify each data point in Fig. 5.10 by dividing it by its L/D value. For example,
for the first row of data, pD®> Ap/(Lu?) = (3.73 E9)/500 = 7.46 E6. We replot these new
data points as solid circles in Fig. 5.10. They correlate almost perfectly into a straight-line

power-law function:

D3A VD 1.75

Pz 2P o 0.155<”—) Ans. (c)
Ly e

All newtonian smooth pipe flows should correlate in this manner. This example is a varia-
tion of the first completely successful dimensional analysis, pipe-flow friction, performed
by Prandtl’s student Paul Blasius, who published a related plot in 1911. For this range of
(turbulent flow) Reynolds numbers, the pressure drop increases approximately as V!>,

EXAMPLE 5.11

The smooth sphere data plotted in Fig. 5.3a represent dimensionless drag versus dimen-
sionless viscosity, since (p, V, d) were selected as scaling or repeating variables. (a) Replot
these data to display the effect of dimensionless velocity on the drag. (b) Use your new fig-
ure to predict the terminal (zero-acceleration) velocity of a 1-cm-diameter steel ball (SG =
7.86) falling through water at 20°C.

Solution

o Assumptions: Fig 5.3a is valid for any smooth sphere in that Reynolds number range.
e Approach (a): Form pi groups from the function F' = fen(d, V, p, w) in such a way that
F is plotted versus V. The answer was already given as Eq. (5.16), but let us review the
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Fig. 5.11 Cross-plot of sphere
drag data from Fig. 5.3a to show
dimensionless force versus dimen-
sionless velocity.

steps. The proper scaling variables are (p, u, d), which do not form a pi. Therefore j = 3,
and we expect n — j = 5 — 3 = 2 pi groups. Skipping the algebra, they arise as
follows:

F vd
I, = p'uld“ F = ’% I, = p'uld< v = e Ans. (a)
® ®

We may replot the data of Fig. 5.3a in this new form, noting that I, = (7/8)(Cp)(Re)>.
This replot is shown as Fig. 5.11. The drag increases rapidly with velocity up to transi-
tion, where there is a slight drop, after which it increases more than ever. If force is known,
we may predict velocity from the figure, and vice versa.

Property values for part (b):  pyater = 998 kg/m3 Mwater = 0.001 kg/(m-s)
Psteel — 7-86pwatcr = 7844 kg/m3

Solution to part (b): For terminal velocity, the drag force equals the net weight of the
sphere in water:

F=We=(p— pw)ggd3 = (7840 — 998)(9.81)(%)(0.01)3 = 0.0351 N
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Therefore the ordinate of Fig. 5.11 is known:

F 8 kg/m*)(0.0351 N
Falling steel sphere: pr = (998 kg/mr ) 5 ) ~ 35E7
w [0.001 kg/(m - )]

From Fig. 5.11, at pF/u® =~ 3.5 E7, a magnifying glass reveals that Re, ~ 2 E4. Then a
crude estimate of the terminal fall velocity is

pvd

2 001 kg/(m -
P4 _ 50000 o __20,000[0.001 kg/(m - 5)]
w

(998 kg/m?)(0.01 m)

m
=~ 2.0? Ans. (b)

e Comments: Better accuracy could be obtained by expanding the scale of Fig. 5.11 in the
region of the given force coefficient. However, there is considerable uncertainty in pub-
lished drag data for spheres, so the predicted fall velocity is probably uncertain by at least
*10 percent.

Note that we found the answer directly from Fig. 5.11. We could use Fig. 5.3a also
but would have to iterate between the ordinate and abscissa to obtain the final result, since
V is contained in both plotted variables.

Chapters 3 and 4 presented integral and differential methods of mathematical analy-
sis of fluid flow. This chapter introduces the third and final method: experimentation,
as supplemented by the technique of dimensional analysis. Tests and experiments are
used both to strengthen existing theories and to provide useful engineering results
when theory is inadequate.

The chapter begins with a discussion of some familiar physical relations and
how they can be recast in dimensionless form because they satisfy the principle of
dimensional homogeneity. A general technique, the pi theorem, is then presented
for systematically finding a set of dimensionless parameters by grouping a list of
variables that govern any particular physical process. A second technique, Ipsen’s
method, is also described. Alternately, direct application of dimensional analysis
to the basic equations of fluid mechanics yields the fundamental parameters gov-
erning flow patterns: Reynolds number, Froude number, Prandtl number, Mach
number, and others.

It is shown that model testing in air and water often leads to scaling difficulties
for which compromises must be made. Many model tests do not achieve true dynamic
similarity. The chapter ends by pointing out that classic dimensionless charts and data
can be manipulated and recast to provide direct solutions to problems that would oth-
erwise be quite cumbersome and laboriously iterative.

Most of the problems herein are fairly straightforward. More dif-  puter. The standard end-of-chapter problems P5.1 to P5.91 (cate-
ficult or open-ended assignments are labeled with an asterisk.  gorized in the problem list here) are followed by word problems
Problems labeled with an EES icon will benefit from the use  WS5.1 to W5.10, fundamentals of engineering exam problems
of the Engineering Equation Solver (EES), while problems FES5.1 to FE5.12, comprehensive applied problems C5.1 to C5.5,

labeled with a computer icon

may require the use of a com- and design projects D5.1 and D5.2.
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Problem Distribution

Section Topic Problems
5.1 Introduction P5.1-P5.9
5.2 The principle of dimensional homogeneity P5.10-P5.13
53 The pi theorem; Ipsen’s method P5.14-P5.42
54 Nondimensionalizing the basic equations P5.43-P5.47
5.4 Data for spheres, cylinders, other bodies P5.48-P5.59
5.5 Scaling of model data P5.60-P5.74
5.5 Froude and Mach number scaling P5.75-P5.84
5.5 Inventive rescaling of the data P5.85-P5.91

Introduction; dynamic similarity

Ps.1

Ps.2

Ps.3

P54

P5.5

P5.6

For axial flow through a circular tube, the Reynolds num-
ber for transition to turbulence is approximately 2300 [see
Eq. (6.2)], based on the diameter and average velocity. If
d =5 cm and the flid is kerosene at 20°C, fid the vol-
ume flow rate in m*/h that causes transition.

A prototype automobile is designed for cold weather in
Denver, CO (—10°C, 83 kPa). Its drag force is to be tested
on a one-seventh-scale model in a wind tunnel at 150 mi/h,
20°C and 1 atm. If the model and prototype are to satisfy
dynamic similarity, what prototype velocity, in mi/h,
needs to be matched? Comment on your result.

The transfer of energy by viscous dissipation is dependent
upon viscosity u, thermal conductivity k, stream velocity
U, and stream temperature 7. Group these quantities, if
possible, into the dimensionless Brinkman number, which
is proportional to .

When tested in water at 20°C fiwing at 2 m/s, an 8-cm-
diameter sphere has a measured drag of 5 N. What will
be the velocity and drag force on a 1.5-m-diameter
weather balloon moored in sea-level standard air under
dynamically similar conditions?

An automobile has a characteristic length and area of 8 ft
and 60 ft, respectively. When tested in sea-level standard
air, it has the following measured drag force versus speed:

V, mi/h ‘ 20 ‘ 40 ‘ 60

Drag, Ibf ‘ 31 ‘ 115 ‘ 249

The same car travels in Colorado at 65 mi/h at an altitude
of 3500 m. Using dimensional analysis, estimate (a) its
drag force and (b) the horsepower required to overcome
air drag.

The full-scale parachute in the chapter-opener photo had
a drag force of approximately 950 Ibf when tested at a
velocity of 12 mi/h in air at 20°C and 1 atm. Earlier, a
model parachute of diameter 1.7 m was tested in the same
tunnel. (@) For dynamic similarity, what should be the air
velocity for the model? (b) What is the expected drag

Ps.7

Ps.8

P59

force of the model? (c) Is there anything surprising about
your result to part (b)?

A body is dropped on the moon (g = 1.62 m/s?) with an
initial velocity of 12 m/s. By using option 2 variables,
Eq. (5.11), the ground impact occurs at #** = (.34 and
S§** = (.84. Estimate (a) the initial displacement, (b) the
final displacement, and (c) the time of impact.

The Morton number Mo, used to correlate bubble dynam-
ics studies, is a dimensionless combination of accelera-
tion of gravity g, viscosity u, density p, and surface ten-
sion coefficient Y. If Mo is proportional to g, find its
form.

The Richardson number, Ri, which correlates the
production of turbulence by buoyancy, is a dimension-
less combination of the acceleration of gravity g, the
fluid temperature T, the local temperature gradient
d7/9z, and the local velocity gradient du/dz. Determine
the form of the Richardson number if it is proportional
to g.

The principle of dimensional homogeneity

P5.10

P5.11

P5.12

P5.13

Determine the dimension {MLTO®} of the following
quantities:
2

du
(a) pu—

2
a
P (b) [ (p = po)dA  (c) pc,
x 1

dx dy

Ié)
@) 11 p dxdyds

All quantities have their standard meanings; for example,
p is density.

During World War II, Sir Geoffrey Taylor, a British
fluid dynamicist, used dimensional analysis to estimate
the wave speed of an atomic bomb explosion. He
assumed that the blast wave radius R was a function of
energy released E, air density p, and time ¢. Use dimen-
sional reasoning to show how wave radius must vary
with time.

The Stokes number, St, used in particle dynamics studies,
is a dimensionless combination of fie variables: acceler-
ation of gravity g, viscosity u, density p, particle veloc-
ity U, and particle diameter D. (a) If St is proportional to
1 and inversely proportional to g, find its form. (b) Show
that St is actually the quotient of two more traditional
dimensionless groups.

The speed of propagation C of a capillary wave in deep
water is known to be a function only of density p,
wavelength A, and surface tension Y. Find the proper
functional relationship, completing it with a dimension-
less constant. For a given density and wavelength, how
does the propagation speed change if the surface tension
is doubled?



The pi theorem; Ipsens method

P5.14 1In forced convection, the heat transfer coefficient 4 is

P5.15

P5.16

P5.17

P5.18

P5.19

P5.20

a function of thermal conductivity k, density p, viscos-
ity um, specific heat c,, body length L, and velocity V.
Heat transfer coefficient has units of W/(m2-K) and
dimensions {MT 3@ '}. Rewrite this relation in
dimensionless form, using (k, p, ¢,, L) as repeating
variables.

The wall shear stress 7,, in a boundary layer is assumed
to be a function of stream velocity U, boundary layer
thickness 6, local turbulence velocity ', density p, and local
pressure gradient dp/dx. Using (p, U, &) as repeating
variables, rewrite this relationship as a dimensionless
function.

Convection heat transfer data are often reported as a heat
transfer coeffiient h , defined by

0= hA AT

where O = heat flow, J/s
A = surface area, m*
AT = temperature difference, K

The dimensionless form of h, called the Stanton number,
is a combination of &, fluid density p, specific heat c,, and
flow velocity V. Derive the Stanton number if it is pro-
portional to . What are the units of A?

If you disturb a tank of length L and water depth £, the
surface will oscillate back and forth at frequency (2,
assumed here to depend also upon water density p and the
acceleration of gravity g. (a) Rewrite this as a dimen-
sionless function. (b) If a tank of water sloshes at 2.0 Hz
on earth, how fast would it oscillate on Mars
(g = 3.7 m/s»)?

Under laminar conditions, the volume flow Q through a
small triangular-section pore of side length b and length
L is a function of viscosity u, pressure drop per unit
length Ap/L, and b. Using the pi theorem, rewrite this
relation in dimensionless form. How does the volume
flow change if the pore size b is doubled?

The period of oscillation 7 of a water surface wave is
assumed to be a function of density p, wavelength A,
depth h, gravity g, and surface tension Y. Rewrite this
relationship in dimensionless form. What results if Y is
negligible? Hint: Take A, p, and g as repeating variables.
A fixed cylinder of diameter D and length L, immersed in
a stream flowing normal to its axis at velocity U, will
experience zero average lift. However, if the cylinder is
rotating at angular velocity (), a lift force F will arise. The
fluid density p is important, but viscosity is secondary and
can be neglected. Formulate this lift behavior as a dimen-
sionless function.

P5.21

P5.22

P5.23

P5.24

P5.25

P5.26
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In Example 5.1 we used the pi theorem to develop
Eq. (5.2) from Eq. (5.1). Instead of merely listing the pri-
mary dimensions of each variable, some workers list the
powers of each primary dimension for each variable in an
array:

F L U P I
M 1 0 0 1 1
L 1 1 1 -3 -1
TL -2 0 -1 0 -1

This array of exponents is called the dimensional
matrix for the given function. Show that the rank of
this matrix (the size of the largest nonzero determi-
nant) is equal to j = n — k, the desired reduction
between original variables and the pi groups. This is a
general property of dimensional matrices, as noted by
Buckingham [1].

When freewheeling, the angular velocity ) of a windmill
is found to be a function of the windmill diameter D, the
wind velocity V, the air density p, the windmill height H
as compared to the atmospheric boundary layer height L,
and the number of blades N:

H
O = fcn(D, V, p, z, N)

Viscosity effects are negligible. Find appropriate pi
groups for this problem and rewrite the function in dimen-
sionless form.

The period T of vibration of a beam is a function of
its length L, area moment of inertia /, modulus of
elasticity E, density p, and Poisson’s ratio o. Rewrite
this relation in dimensionless form. What further
reduction can we make if £ and [/ can occur only in
the product form EI? Hint: Take L, p, and E as repeat-
ing variables.

The lift force F on a missile is a function of its length
L, velocity V, diameter D, angle of attack «, density
p, viscosity u, and speed of sound a of the air. Write
out the dimensional matrix of this function and deter-
mine its rank. (See Prob. P5.21 for an explanation of
this concept.) Rewrite the function in terms of pi
groups.

The thrust F of a propeller is generally thought to be a
function of its diameter D and angular velocity (), the
forward speed V, and the density p and viscosity u of
the fluid. Rewrite this relationship as a dimensionless
function.

A pendulum has an oscillation period 7 which is
assumed to depend on its length L, bob mass m, angle
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Ps.27

P5.28

P5.29

P5.30

P5.31

P5.32

of swing 6, and the acceleration of gravity. A pendulum
1 m long, with a bob mass of 200 g, is tested on earth
and found to have a period of 2.04 s when swinging at
20°. (a) What is its period when it swings at 45°? A
similarly constructed pendulum, with L = 30 cm and
m =100 g, is to swing on the moon (g = 1.62 m/s%) at
0 = 20°. (b) What will be its period?

In studying sand transport by ocean waves, A. Shields
in 1936 postulated that the threshold wave-induced
bottom shear stress 7 required to move particles
depends on gravity g, particle size d and density p,,
and water density p and viscosity w. Find suitable
dimensionless groups of this problem, which resulted
in 1936 in the celebrated Shields sand transport
diagram.

A simply supported beam of diameter D, length L, and
modulus of elasticity E is subjected to a fluid crossflow
of velocity V, density p, and viscosity . Its center
deflection 6 is assumed to be a function of all these vari-
ables. (a) Rewrite this proposed function in dimension-
less form. (b) Suppose it is known that 6 is independ-
ent of u, inversely proportional to E, and dependent
only on pV? not p and V separately. Simplify the
dimensionless function accordingly. Hint: Take L, p,
and V as repeating variables.

When fluid in a pipe is accelerated linearly from rest, it
begins as laminar flow and then undergoes transition to
turbulence at a time #,, that depends on the pipe diame-
ter D, fluid acceleration a, density p, and viscosity u.
Arrange this into a dimensionless relation between f,
and D.

When a large tank of high-pressure gas discharges
through a nozzle, the exit mass flow m is a function of
tank pressure p, and temperature T, gas constant R, spe-
cific heat ¢,, and nozzle diameter D. Rewrite this as a
dimensionless function. Check to see if you can use (po,
Ty, R, D) as repeating variables.

The heat transfer rate per unit area g to a body from a
fluid in natural or gravitational convection is a function
of the temperature difference AT, gravity g, body length
L, and three fluid properties: kinematic viscosity v, con-
ductivity k, and thermal expansion coefficient 8. Rewrite
in dimensionless form if it is known that g and 8 appear
only as the product gS.

A weir is an obstruction in a channel flow that can be
calibrated to measure the flow rate, as in Fig. P5.32. The
volume flow Q varies with gravity g, weir width b into
the paper, and upstream water height H above the weir
crest. If it is known that Q is proportional to b, use the
pi theorem to find a unique functional relationship

0(g. b, H).

P5.33

P5.34

P5.35

i<

oz~
|
|
|

l

Weir

P5.32

A spar buoy (see Prob. P2.113) has a period T of vertical
(heave) oscillation that depends on the waterline cross-
sectional area A, buoy mass m, and fluid specific weight
v. How does the period change due to doubling of (a) the
mass and (b) the area? Instrument buoys should have long
periods to avoid wave resonance. Sketch a possible long-
period buoy design.

To good approximation, the thermal conductivity k of a gas
(see Ref. 30 of Chap. 1) depends only on the density p,
mean free path /, gas constant R, and absolute temperature
T. For air at 20°C and 1 atm, k = 0.026 W/(m - K) and [ =
6.5 E-8 m. Use this information to determine k for hydro-
gen at 20°C and 1 atm if /=~ 1.2 E-7 m.

The torque M required to turn the cone-plate vis-
cometer in Fig. P5.35 depends on the radius R, rota-
tion rate (), fluid viscosity u, and cone angle 6.
Rewrite this relation in dimensionless form. How does
the relation simplify it if it is known that M is pro-
portional to 6?

-

P5.36

Fluid
P5.35

The rate of heat loss O,y through a window or wall is a
function of the temperature difference between inside and
outside AT, the window surface area A, and the R value
of the window, which has units of (ft®-h - °F)/
Btu. (a) Using the Buckingham Pi Theorem, find an
expression for rate of heat loss as a function of the other
three parameters in the problem. (b) If the temperature
difference AT doubles, by what factor does the rate of heat
loss increase?



P5.37

P5.38

P5.39

P5.40

P5.41

P5.42

The volume flow Q through an orifice plate is a function
of pipe diameter D, pressure drop Ap across the orifice,
fluid density p and viscosity w, and orifice diameter d.
Using D, p, and Ap as repeating variables, express this rela-
tionship in dimensionless form.

The size d of droplets produced by a liquid spray nozzle
is thought to depend on the nozzle diameter D, jet veloc-
ity U, and the properties of the liquid p, u, and Y. Rewrite
this relation in dimensionless form. Hint: Take D, p, and
U as repeating variables.

Consider natural convection in a rotating, fluid-filled
enclosure. The average wall shear stress 7 in the enclo-
sure is assumed to be a function of rotation rate (), enclo-
sure height H, density p, temperature difference AT,
viscosity um, and thermal expansion coefficient f.
(a) Rewrite this relationship as a dimensionless function.
(b) Do you see a severe fiw in the analysis?

The time 7, to drain a liquid from a hole in the bottom of
a tank is a function of the hole diameter d, the initial fluid
volume vy, the initial liquid depth %y, and the density p
and viscosity u of the fluid. Rewrite this relation as a
dimensionless function, using Ipsen’s method.

A certain axial flow turbine has an output torque M that
is proportional to the volume flow rate Q and also depends
on the density p, rotor diameter D, and rotation rate ().
How does the torque change due to a doubling of (a) D
and (b) Q?

When disturbed, a floating buoy will bob up and down at
frequency f. Assume that this frequency varies with buoy
mass m, waterline diameter d, and the specific weight y
of the liquid. (a) Express this as a dimensionless function.
(b) It d and vy are constant and the buoy mass is halved,
how will the frequency change?

Nondimensionalizing the basic equations

P5.43

P5.44

Nondimensionalize the energy equation (4.75) and its
boundary conditions (4.62), (4.63), and (4.70) by defin-
ing T* = T/Ty,, where T, is the inlet temperature,
assumed constant. Use other dimensionless variables as
needed from Eqs. (5.23). Isolate all dimensionless
parameters you find, and relate them to the list given in
Table 5.2.

The differential energy equation for incompressible two-
dimensional flow through a “Darcy-type” porous medium
is approximately

o dp T

c,——— +
p’u axox P

o dp T

c— 220
" ay dy
where o is the permeability of the porous medium. All
other symbols have their usual meanings. (¢) What are the
appropriate dimensions for ? (b) Nondimensionalize this

o _

0
ay2

P5.45

P5.46

P5.47
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equation, using (L, U, p, Ty) as scaling constants, and dis-
cuss any dimensionless parameters that arise.

A model differential equation, for chemical reaction
dynamics in a plug reactor, is as follows:

2
C BT e iC
0x 0x ot
where u is the velocity, D is a diffusion coefficient, k is
a reaction rate, x is distance along the reactor, and C is
the (dimensionless) concentration of a given chemical in
the reactor. (a) Determine the appropriate dimensions of
D and k. (b) Using a characteristic length scale L and
average velocity V as parameters, rewrite this equation in
dimensionless form and comment on any pi groups
appearing.
If a vertical wall at temperature 7%, is surrounded by a
fluid at temperature T, a natural convection boundary
layer flow will form. For laminar flow, the momentum
equation is

ou n au) BT — Tog + a’u
v—) = — —
ox dy p 0)8 I 8y2
to be solved, along with continuity and energy, for (u, v, 7)
with appropriate boundary conditions. The quantity 3 is the
thermal expansion coefficient of the fluid. Use p, g, L, and
(T, —Tp) to nondimensionalize this equation. Note that there
is no “stream” velocity in this type of flow.
The differential equation for small-amplitude vibrations
y(x, f) of a simple beam is given by
oy o'y
A—S + EI— =0
PRl T P oxd
where p = beam material density
A = cross-sectional area
1 = area moment of inertia
E = Young’s modulus

Use only the quantities p, E, and A to nondimensionalize
v, x, and #, and rewrite the differential equation in dimen-
sionless form. Do any parameters remain? Could they be
removed by further manipulation of the variables?

Data for spheres, cylinders, other bodies

P5.48

P5.49

A smooth steel (SG = 7.86) sphere is immersed in a
stream of ethanol at 20°C moving at 1.5 m/s. Estimate its
drag in N from Fig. 5.3a. What stream velocity would
quadruple its drag? Take D = 2.5 cm.

The sphere in Prob. P5.48 is dropped in gasoline at 20°C.
Ignoring its acceleration phase, what will its terminal
(constant) fall velocity be, from Fig. 5.3a?
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P5.50 The parachute in the chapter-opener photo is, of course,
meant to decelerate the payload on Mars. The wind tun-
nel test gave a drag coefficient of about 1.1, based upon
the projected area of the parachute. Suppose it was falling
on earth and, at an altitude of 1000 m, showed a steady
descent rate of about 18 mi/h. Estimate the weight of the
payload.

A ship is towing a sonar array that approximates a sub-
merged cylinder 1 ft in diameter and 30 ft long with its
axis normal to the direction of tow. If the tow speed is
12 kn (1 kn = 1.69 ft/s), estimate the horsepower required
to tow this cylinder. What will be the frequency of vor-
tices shed from the cylinder? Use Figs. 5.2 and 5.3.
When fluid in a long pipe starts up from rest at a uniform
acceleration a, the initial flow is laminar. The flow under-
goes transition to turbulence at a time * which depends,
to first approximation, only upon a, p, and w. Experiments
by P. J. Lefebvre, on water at 20°C starting from rest with
1-g acceleration in a 3-cm-diameter pipe, showed transi-
tion at ¥ = 1.02 s. Use this data to estimate (@) the tran-
sition time and (b) the transition Reynolds number Rej,
for water flow accelerating at 35 m/s” in a 5-cm-diame-
ter pipe.

Vortex shedding can be used to design a vortex flwmeter
(Fig. 6.33). A blunt rod stretched across the pipe sheds vor-
tices whose frequency is read by the sensor downstream.
Suppose the pipe diameter is 5 cm and the rod is a cylin-
der of diameter 8 mm. If the sensor reads 5400 counts per
minute, estimate the volume flow rate of water in m>/h.
How might the meter react to other liquids?

A fishnet is made of 1-mm-diameter strings knotted into
2 X 2 cm squares. Estimate the horsepower required to
tow 300 ft* of this netting at 3 kn in seawater at 20°C.
The net plane is normal to the flow direction.

The radio antenna on a car begins to vibrate wildly at 8 Hz
when the car is driven at 45 mi/h over a rutted road that
approximates a sine wave of amplitude 2 cm and wave-
length A = 2.5 m. The antenna diameter is 4 mm. Is the
vibration due to the road or to vortex shedding?

Flow past a long cylinder of square cross-section results
in more drag than the comparable round cylinder. Here
are data taken in a water tunnel for a square cylinder of
side length b = 2 cm:

Ps.51

P5.52

P5.53

P5.54

P5.55

P5.56

V, m/s ‘ 1.0 ‘ 2.0 ‘ 3.0 ‘ 4.0

Drag, N/(m of depth) ‘ 21 ‘ 85 ‘ 191 ‘ 335

(a) Use these data to predict the drag force per unit depth
of wind blowing at 6 m/s, in air at 20°C, over a tall square
chimney of side length b = 55 cm. (b) Is there any uncer-
tainty in your estimate?

P5.57 The simply supported 1040 carbon-steel rod of Fig. P5.57
is subjected to a crossfiw stream of air at 20°C and
1 atm. For what stream velocity U will the rod center
deflection be approximately 1 cm?

D=1cm, L=60cm

——>0=1cm?

P5.57

P5.58 For the steel rod of Prob. P5.57, at what airstream

velocity U will the rod begin to vibrate laterally in
resonance in its first mode (a half sine wave)? Hint:
Consult a vibration text [34,35] under “lateral beam
vibration.”

P5.59 A long, slender, smooth 3-cm-diameter flagpole bends
alarmingly in 20 mi/h sea-level winds, causing patriotic
citizens to gasp. An engineer claims that the pole will
bend less if its surface is deliberately roughened. Is she
correct, at least qualitatively?

Scaling of model data

*P5.60 The thrust F of a free propeller, either aircraft or
marine, depends upon density p, the rotation rate n in
r/s, the diameter D, and the forward velocity V. Viscous
effects are slight and neglected here. Tests of a 25-cm-
diameter model aircraft propeller, in a sea-level wind
tunnel, yield the following thrust data at a velocity of

20 m/s:
Rotation rate, r/min ‘ 4800 ‘ 6000 ‘ 8000
Measured thrust, N ‘ 6.1 ‘ 19 ‘ 47

(a) Use this data to make a crude but effective dimen-
sionless plot. (b) Use the dimensionless data to predict
the thrust, in newtons, of a similar 1.6-m-diameter pro-
totype propeller when rotating at 3800 r/min and flying
at 225 mi/h at 4000-m standard altitude.

P5.61 If viscosity is neglected, typical pump flow results from
Example 5.3 are shown in Fig. P5.61 for a model pump

tested in water. The pressure rise decreases and the power
required increases with the dimensionless flow coefficient.
Curve-fit expressions are given for the data. Suppose a
similar pump of 12-cm diameter is built to move gasoline
at 20°C and a fiw rate of 25 m “/h. If the pump rotation
speed is 30 1/s, find (a) the pressure rise and (b) the power
required.



P5.62
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—

STD3 = flow coefficient

P5.61

Extend Prob. P5.30 as follows. Let the maximum mass
flow m again be a function of tank pressure p, and tem-
perature 7T, gas constant R, and nozzle diameter D, but
replace ¢, by the specific heat ratio, k. For an air tank at
190 kPa and 330 K, with a 2-cm nozzle diameter, exper-
iments show a mass flow of 0.133 kg/s. (a) Can this data
be used to correlate an oxygen tank? (b) If so, estimate
the oxygen mass flow if the tank conditions are 300 kPa
and 450 K, with a nozzle diameter of 3 cm.

*P5.63 The pressure drop per unit length Ap/L in smooth pipe

P5.64

flow is known to be a function only of the average veloc-
ity V, diameter D, and fluid properties p and u. The fol-
lowing data were obtained for iw of water at 20°C in
an 8-cm-diameter pipe 50 m long:

0, m’/s ‘

Ap, Pa ‘

0.005 | 001
5800 | 20300 | 42,100 | 70,800

‘ 0.015 ‘0.020

Verity that these data are slightly outside the range of Fig.
5.10. What is a suitable power-law curve fit for the pres-
ent data? Use these data to estimate the pressure drop for
fw of kerosene at 20°C in a smooth pipe of diameter
5 cm and length 200 m if the flow rate is 50 m*/h.

The natural frequency w of vibration of a mass M attached
to a rod, as in Fig. P5.64, depends only on M

L Stiffness El

PS.64

P5.65

P5.66

P5.67

P5.68

P5.69
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and the stiffness EI and length L of the rod. Tests with a
2-kg mass attached to a 1040 carbon steel rod of diame-
ter 12 mm and length 40 cm reveal a natural frequency
of 0.9 Hz. Use these data to predict the natural frequency
of a 1-kg mass attached to a 2024 aluminum alloy rod of
the same size.

In turbulent flow near a flat wall, the local velocity u
varies only with distance y from the wall, wall shear stress
7,,» and fluid properties p and w. The following data were
taken in the University of Rhode Island wind tunnel for
airflow, p = 0.0023 slug/ft®>, u = 3.81 E-7 slug/(ft - s),
and 7,, = 0.029 Ibf/ft*:

Yy, in

u, ft/s

| 0021 | 0035 | 0055 | 0080 | 0.12
| 506 | 542 | 576 | 507 | 635

| 016
| 659

(a) Plot these data in the form of dimensionless u versus
dimensionless y, and suggest a suitable power-law curve
fit. (b) Suppose that the tunnel speed is increased until
u =90 ft/s at y = 0.11 in. Estimate the new wall shear
stress, in Ibf/ft?.

A torpedo 8 m below the surface in 20°C seawater cavi-
tates at a speed of 21 m/s when atmospheric pressure is
101 kPa. If Reynolds number and Froude number effects
are negligible, at what speed will it cavitate when running
at a depth of 20 m? At what depth should it be to avoid
cavitation at 30 m/s?

A student needs to measure the drag on a prototype of char-
acteristic dimension d,, moving at velocity U, in air at stan-
dard atmospheric conditions. He constructs a model of
characteristic dimension d,,, such that the ratio d,/d,, is
some factor f. He then measures the drag on the model at
dynamically similar conditions (also with air at standard
atmospheric conditions). The student claims that the drag
force on the prototype will be identical to that measured on
the model. Is this claim correct? Explain.

For the rotating-cylinder function of Prob. P5.20, if
L >> D, the problem can be reduced to only two
groups, F/(pULD) versus (1D/U). Here are experi-
mental data for a cylinder 30 cm in diameter and 2 m
long, rotating in sea-level air, with U = 25 m/s.

[ 0| 3000 | 6000 | 9000 | 12000 15000
o [ 850 | 2260 | 2000 | 3120 3300

(), rev/min
F, N

(a) Reduce this data to the two dimensionless groups and
make a plot. (b) Use this plot to predict the lift of a cylin-
der with D = 5 cm, L = 80 cm, rotating at 3800 rev/min
in water at U = 4 m/s.

A simple flow measurement device for streams and chan-
nels is a notch, of angle «, cut into the side of a dam, as
shown in Fig. P5.69. The volume flow Q depends only on
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P5.70

P5.71

P5.72

«, the acceleration of gravity g, and the height 6 of the
upstream water surface above the notch vertex. Tests of a
model notch, of angle o = 55°, yield the following w

rate data:
5, cm | 20 | 30 | 40
omh | 8 | 47 | 126 | 263

(a) Find a dimensionless correlation for the data (b) Use
the model data to predict the flow rate of a prototype
notch, also of angle o = 55° when the upstream height
0is 3.2 m.

P5.69

A diamond-shaped body, of characteristic length 9 in, has
the following measured drag forces when placed in a wind
tunnel at sea-level standard conditions:

Vv, ft/s ‘ 30 ‘ 38 ‘ 48 ‘ 56 ‘ 61
F iof | 125 | 195 | 302 | 405 |

4.81

Use these data to predict the drag force of a similar
15-in diamond placed at similar orientation in 20°C
water flowing at 2.2 m/s.

The pressure drop in a venturi meter (Fig. P3.128) varies
only with the fluid density, pipe approach velocity, and
diameter ratio of the meter. A model venturi meter tested
in water at 20°C shows a 5-kPa drop when the approach
velocity is 4 m/s. A geometrically similar prototype
meter is used to measure gasoline at 20°C and a fiw
rate of 9 m*/min. If the prototype pressure gage is most
accurate at 15 kPa, what should the upstream pipe diam-
eter be?

A one-twelfth-scale model of a large commercial aircraft
is tested in a wind tunnel at 20°C and 1 atm. The model
chord length is 27 cm, and its wing area is 0.63 m>. Test
results for the drag of the model are as follows:

V, mi/h ‘ 50 ‘ 75 ‘ 100 ‘ 125
Drag, N ‘ 15 ‘ 32 ‘ 53 ‘ 80

In the spirit of Fig. 5.8, use this data to estimate the drag
of the full-scale aircraft when flying at 550 mi/h, for the
same angle of attack, at 32,800 ft standard altitude.

P5.73

P5.74

The power P generated by a certain windmill design
depends on its diameter D, the air density p, the wind
velocity V, the rotation rate ), and the number of blades
n. (a) Write this relationship in dimensionless form. A
model windmill, of diameter 50 cm, develops 2.7 kW
at sea level when V = 40 m/s and when rotating at
4800 r/min. (b) What power will be developed by a geo-
metrically and dynamically similar prototype, of diam-
eter 5 m, in winds of 12 m/s at 2000 m standard alti-
tude? (¢) What is the appropriate rotation rate of the
prototype?

A one-tenth-scale model of a supersonic wing tested at
700 m/s in air at 20°C and 1 atm shows a pitching
moment of 0.25 kN - m. If Reynolds number effects are
negligible, what will the pitching moment of the proto-
type wing be if it is flying at the same Mach number at
8-km standard altitude?

Froude and Mach number scaling

PS.75

*PS5.76

According to the web site USGS Daily Water Data for the
Nation, the mean flow rate in the New River near Hinton,
WV, is 10,100 ft¥/s. If the hydraulic model in Fig. 5.9 is
to match this condition with Froude number scaling, what
is the proper model flow rate?

A 2-ft-long model of a ship is tested in a freshwater tow
tank. The measured drag may be split into “friction”
drag (Reynolds scaling) and “wave” drag (Froude scal-
ing). The model data are as follows:

Tow speed, ft/s 0.8 1.6 2.4 3.2 4.0 4.8
Friction drag, 1bf | 0.016 | 0.057 0.122 | 0.208 0.315 0.441
Wave drag, 1bf 0.002 | 0.021 0.083 | 0.253 0.509 0.697

P5.77

P5.78

P5.79

The prototype ship is 150 ft long. Estimate its total drag
when cruising at 15 kn in seawater at 20°C.

A dam spillway is to be tested by using Froude scaling
with a one-thirtieth-scale model. The model flow has an
average velocity of 0.6 m/s and a volume flow of
0.05 m*/s. What will the velocity and flow of the proto-
type be? If the measured force on a certain part of the
model is 1.5 N, what will the corresponding force on the
prototype be?

A prototype spillway has a characteristic velocity of
3 m/s and a characteristic length of 10 m. A small
model is constructed by using Froude scaling. What is
the minimum scale ratio of the model that will ensure
that its minimum Weber number is 100? Both flows use
water at 20°C.

An East Coast estuary has a tidal period of 12.42 h (the
semidiurnal lunar tide) and tidal currents of approximately



P5.80

P5.81

P5.82

P5.83

P5.84

80 cm/s. If a one-five-hundredth-scale model is constructed
with tides driven by a pump and storage apparatus, what
should the period of the model tides be and what model cur-
rent speeds are expected?

A prototype ship is 35 m long and designed to cruise at
11 m/s (about 21 kn). Its drag is to be simulated by a 1-m-
long model pulled in a tow tank. For Froude scaling find
(a) the tow speed, (b) the ratio of prototype to model drag,
and (c) the ratio of prototype to model power.

An airplane, of overall length 55 ft, is designed to fly at
680 m/s at 8000-m standard altitude. A one-thirtieth-scale
model is to be tested in a pressurized helium wind tunnel
at 20°C. What is the appropriate tunnel pressure in atm?
Even at this (high) pressure, exact dynamic similarity is
not achieved. Why?

A one-fiftieth scale model of a military airplane is
tested at 1020 m/s in a wind tunnel at sea-level condi-
tions. The model wing area is 180 cm?. The angle of
attack is 3 degrees. If the measured model lift is 860 N,
what is the prototype lift, using Mach number scaling,
when it flies at 10,000 m standard altitude under
dynamically similar conditions? Note: Be careful with
the area scaling.

A one-fortieth-scale model of a ship’s propeller is tested
in a tow tank at 1200 r/min and exhibits a power output
of 1.4 ft - Ibf/s. According to Froude scaling laws, what
should the revolutions per minute and horsepower output
of the prototype propeller be under dynamically similar
conditions?

A prototype ocean platform piling is expected to
encounter currents of 150 cm/s and waves of 12-s period
and 3-m height. If a one-fifteenth-scale model is tested in
a wave channel, what current speed, wave period, and
wave height should be encountered by the model?

Inventive rescaling of the data

*P5.85 As shown in Example 5.3, pump performance data can be

nondimensionalized. Problem P5.61 gave typical dimen-
sionless data for centrifugal pump “head,” H = Ap/pg, as
follows:

gH oY

el 6.0 120(nD3)
where Q is the volume flow rate, n the rotation rate in
r/s, and D the impeller diameter. This type of correla-
tion allows one to compute H when (p, Q, D) are
known. (a) Show how to rearrange these pi groups so
that one can size the pump, that is, compute D directly
when (Q, H, n) are known. (b) Make a crude but effec-
tive plot of your new function. (¢) Apply part (b) to the

P5.86

P5.87

P5.88

P5.89

P5.90
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following example: Find D when H = 37 m, Q = 0.14
m¥/s, and n = 35 r/s. Find the pump diameter for this
condition.
Solve Prob. P5.49 for glycerin at 20°C, using the modi-
fied sphere-drag plot of Fig. 5.11.
In Prob. P5.61 it would be difficult to solve for ()
because it appears in all three of the dimensionless pump
coefficients. Suppose that, in Prob. 5.61, () is unknown
but D = 12 cm and Q = 25 m>/h. The fluid is gasoline
at 20°C. Rescale the coefiients, using the data of Prob.
P5.61, to make a plot of dimensionless power versus
dimensionless rotation speed. Enter this plot to find the
maximum rotation speed () for which the power will not
exceed 300 W.
Modify Prob. P5.61 as follows: Let ) = 32 r/s and Q =
24 m*/h for a geometrically similar pump. What is the
maximum diameter if the power is not to exceed 340 W?
Solve this problem by rescaling the data of Fig. P5.61 to
make a plot of dimensionless power versus dimension-
less diameter. Enter this plot directly to find the desired
diameter.
Wall friction 7, for turbulent flow at velocity U in a pipe
of diameter D, was correlated, in 1911, with a dimen-
sionless correlation by Ludwig Prandtl’s student H. Bla-
sius:

Ty 0.632

pU>  (pUDI)™
Suppose that (p, U, u, 7,,) were all known and it was
desired to find the unknown velocity U. Rearrange and
rewrite the formula so that U can be immediately
calculated.
Knowing that Ap is proportional to L, rescale the data of
Example 5.10 to plot dimensionless Ap versus dimen-
sionless viscosity. Use this plot to find the viscosity
required in the first row of data in Example 5.10 if the
pressure drop is increased to 10 kPa for the same flow
rate, length, and density.

*P5.91 The traditional “Moody-type” pipe friction correlation in

Chap. 6 is of the form

2ApD (pVD 8)
= >— = fen| ——, —
pV°L D

7

where D is the pipe diameter, L the pipe length, and & the
wall roughness. Note that pipe average velocity V is used
on both sides. This form is meant to find Ap when V is
known. (a) Suppose that Ap is known, and we wish to
find V. Rearrange the above function so that V is isolated
on the left-hand side. Use the following data, for &/D =
0.005, to make a plot of your new function, with your
velocity parameter as the ordinate of the plot.
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f

‘ 0.0356 ‘ 0.0316 ‘ 0.0308

‘ 0.0305 ‘ 0.0304

pVD/u ‘ 15,000 ‘ 75,000 ‘ 250,000 ‘ 900,000 ‘ 3,330,000

Word Problems

WsS.1

W5.2

W5s.3

WS5.4

Ws.S

In 98 percent of data analysis cases, the “reducing fac-
tor” j, which lowers the number n of dimensional vari-
ables to n — j dimensionless groups, exactly equals the
number of relevant dimensions (M, L, T, ©). In one case
(Example 5.5) this was not so. Explain in words why
this situation happens.

Consider the following equation: 1 dollar bill = 6 in. Is
this relation dimensionally inconsistent? Does it satisfy
the PDH? Why?

In making a dimensional analysis, what rules do you fol-
low for choosing your scaling variables?

In an earlier edition, the writer asked the following
question about Fig. 5.1: “Which of the three graphs is a
more effective presentation?” Why was this a dumb
question?

This chapter discusses the difficulty of scaling Mach and
Reynolds numbers together (an airplane) and Froude
and Reynolds numbers together (a ship). Give an exam-
ple of a flow that would combine Mach and Froude
numbers. Would there be scaling problems for common
fluids?

Fundamentals of Engineering Exam Problems

FES.1

FES.2

FES.3

FES.4

Given the parameters (U, L, g, p, n) that affect a cer-
tain liquid flow problem, the ratio V*/(Lg) is usually
known as the

(a) velocity head, (b) Bernoulli head, (¢) Froude num-
ber, (d) kinetic energy, (e) impact energy

A ship 150 m long, designed to cruise at 18 kn, is to
be tested in a tow tank with a model 3 m long. The
appropriate tow velocity is

(a) 0.19 m/s, (b) 0.35 m/s, (c) 1.31 m/s,

(d) 2.55 m/s, (e) 8.35 m/s

A ship 150 m long, designed to cruise at 18 kn, is to
be tested in a tow tank with a model 3 m long. If the
model wave drag is 2.2 N, the estimated full-size ship
wave drag is

(a) 5500 N, (b) 8700 N, (c) 38,900 N,

(d) 61,800 N, (e) 275,000 N

A tidal estuary is dominated by the semidiurnal lunar
tide, with a period of 12.42 h. If a 1:500 model of the

(b) Use your plot to determine V, in m/s, for the following pipe
flow: D = 5 cm, ¢ = 0.025 cm, L = 10 m, for water ilw at 20°C
and 1 atm. The pressure drop Ap is 110 kPa.

Ws.6

Ws.7

Ws.8

W5.9

W5.10

FES.5

FES.6

What is different about a very small model of a weir or
dam (Fig. P5.32) that would make the test results diffi-
cult to relate to the prototype?

What else are you studying this term? Give an example
of a popular equation or formula from another course
(thermodynamics, strength of materials, or the like) that
does not satisfy the principle of dimensional homo-
geneity. Explain what is wrong and whether it can be
modified to be homogeneous.

Some colleges (such as Colorado State University) have
environmental wind tunnels that can be used to study
phenomena like wind flow over city buildings. What
details of scaling might be important in such studies?
If the model scale ratio is « = L, /L, as in Eq. (5.31),
and the Weber number is important, how must the model
and prototype surface tension be related to « for
dynamic similarity?

For a typical incompressible velocity potential analysis
in Chap. 8 we solve V¢ = 0, subject to known values
of d¢p/dn on the boundaries. What dimensionless param-
eters govern this type of motion?

estuary is tested, what should be the model tidal
period?

(a) 4.0 s, (b) 1.5 min, (¢) 17 min, (d) 33 min,

(e) 64 min

A football, meant to be thrown at 60 mi/h in sea-level
air (p = 1.22 kg/m®, u = 1.78 E-5 N - s/m?), is to be
tested using a one-quarter scale model in a water tunnel
(p =998 kg/m>, w =0.0010 N - s/m?). For dynamic
similarity, what is the proper model water velocity?
(a) 7.5 mi/h, (b) 15.0 mi/h, (¢) 15.6 mi/h,

(d) 16.5 mi/h, (e) 30 mi/h

A football, meant to be thrown at 60 mi/h in sea-level
air (p =122 kg/m®, u =178 E-5 N-m?), is to be
tested using a one-quarter scale model in a water tun-
nel (p =998 kg/m® u=0.0010 N-s/m?. For
dynamic similarity, what is the ratio of prototype force
to model force?

(a) 3.86:1, (b) 16:1, (c) 32:1, (d) 56:1, (e) 64:1



FES.7  Consider liquid flow of density p, viscosity u, and
velocity U over a very small model spillway of length
scale L, such that the liquid surface tension coefficient
Y is important. The quantity pU?L/Y in this case is
important and is called the

(a) capillary rise, (b) Froude number, (c¢) Prandtl num-
ber, (d) Weber number, (¢) Bond number

If a stream flowing at velocity U past a body of length
L causes a force F on the body that depends only on U,
L, and fluid viscosity w, then F must be proportional to
(@) pUL/w, (b) pUL?, (¢) pUIL, (d) wUL, (e) UL/u
In supersonic wind tunnel testing, if different gases are
used, dynamic similarity requires that the model and
prototype have the same Mach number and the same
(a) Euler number, (b) speed of sound, (c) stagnation
enthalpy, (d) Froude number, (e) specific-heat ratio

FES.8

FES.9

Comprehensive Problems

C5.1 Estimating pipe wall friction is one of the most common
tasks in fluids engineering. For long circular rough pipes in
turbulent flow, wall shear 7,, is a function of density p, vis-
cosity w, average velocity V, pipe diameter d, and wall
roughness height €. Thus, functionally, we can write 7,, =
fen(p, w, V, d, €). (a) Using dimensional analysis, rewrite this
function in dimensionless form. (b) A certain pipe has d =
5 cm and € = 0.25 mm. For 8w of water at 20°C, meas-
urements show the following values of wall shear stress:

Q. gal/min ‘ 1.5 ‘ 3.0 ‘ 6.0 ‘ 9.0 ‘

120 |
| 005 | o018 | | 064 | 086 |

14.0
1.25

7, Pa 0.37

Plot these data using the dimensionless form obtained in
part (a) and suggest a curve-fit formula. Does your plot
reveal the entire functional relation obtained in part (a)?
When the fluid exiting a nozzle, as in Fig. P3.49, is a gas,
instead of water, compressibility may be important, espe-
cially if upstream pressure p; is large and exit diameter d,
is small. In this case, the difference p; — p, is no longer con-
trolling, and the gas mass flow 7 reaches a maximum value
that depends on p; and d, and also on the absolute upstream
temperature 7 and the gas constant R. Thus, functionally,
m = fen(py, d», Ty, R). (a) Using dimensional analysis,
rewrite this function in dimensionless form. (b) A certain
pipe has d, = 1 cm. For flow of air, measurements show the
following values of mass flow through the nozzle:

C5.2

T, K 300 300 300 500 800
p1, kPa 200 250 300 300 300
m, kg/s 0.037 0.046 0.055 0.043 0.034
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FES5.10 The Reynolds number for a 1-ft-diameter sphere mov-
ing at 2.3 mi/h through seawater (specific gravity
1.027, viscosity 1.07 E-3 N - s/m?) is approximately
(a) 300, (b) 3000, (c) 30,000, (d) 300,000,

(e) 3,000,000

The Ekman number, important in physical oceanogra-
phy, is a dimensionless combination of w, L, p, and the
earth’s rotation rate (). If the Ekman number is pro-
portional to ), it should take the form

(@) pO’Lp, (b) pQLip, (¢) pQL/p. (d) pQL .,
(e) pQV/Lp

A valid, but probably useless, dimensionless group is
given by (uTog)/(Y L), where everything has its usual
meaning, except . What are the dimensions of a?
(@ OL™'T™', (b)) L™ 'T72, (c) OGML ™/,

(d O LT, (¢) OLT !

FES.11

FES.12

Plot these data in the dimensionless form obtained in part
(a). Does your plot reveal the entire functional relation
obtained in part (a)?

Reconsider the fully developed draining vertical oil film
problem (see Fig. P4.80) as an exercise in dimensional
analysis. Let the vertical velocity be a function only of dis-
tance from the plate, fluid properties, gravity, and film
thickness. That is, w = fen(x, p, u, g, 6). (@) Use the pi
theorem to rewrite this function in terms of dimensionless
parameters. (b) Verify that the exact solution from Prob.
P4.80 is consistent with your result in part (a).

The Taco Inc. model 4013 centrifugal pump has an
impeller of diameter D = 12.95 in. When pumping 20°C
water at {) = 1160 r/min, the measured flow rate Q and
pressure rise Ap are given by the manufacturer as follows:

C5.3

C54

0, gal/min ‘ 200 ‘ 300 ‘ 400 ‘ 500 ‘ 600 ‘ 700

Ap, lb/in® | 36 | 35 | 34 | 32 | 29 | 23

(a) Assuming that Ap = fen(p, Q, D, (), use the pi theo-
rem to rewrite this function in terms of dimensionless
parameters and then plot the given data in dimensionless
form. (b) It is desired to use the same pump, running at
900 r/min, to pump 20°C gasoline at 400 gal/min. Accord-
ing to your dimensionless correlation, what pressure rise
Ap is expected, in Ibf/in*?

Does an automobile radio antenna vibrate in resonance due
to vortex shedding? Consider an antenna of length L and
diameter D. According to beam vibration theory [see
[34, 35], p. 401], the first mode natural frequency of a solid

circular cantilever beam is w, = 3.516[EI/(pAL4)]”2,

C5.5
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where E is the modulus of elasticity, / is the area
moment of inertia, p is the beam material density, and
A is the beam cross-section area. (a) Show that w, is
proportional to the antenna radius R. (b) If the antenna

Design Projects

Ds.1

[

We are given laboratory data, taken by Prof. Robert Kirchhoff
and his students at the University of Massachusetts, for the
spin rate of a 2-cup anemometer. The anemometer was
made of ping-pong balls (d = 1.5 in) split in half, facing
in opposite directions, and glued to thin (j-in) rods pegged
to a center axle. (See Fig. P7.91 for a sketch.) There were
four rods, of lengths / = 0.212, 0.322, 0.458, and 0.574 ft.
The experimental data, for wind tunnel velocity U and
rotation rate (), are as follows:

=0.212 1=0.322 1=0.458 [ =0.574

U, ft/s Q, r/min|U, ft/s (), r/min

U, ft/s Q, r/min|U, ft/s (), r/min

18.95
22.20
25.90
29.94
38.45

435 18.95 225 |20.10 140 | 23.21 115
545 |23.19 290 | 26.77 215 | 27.60 145
650 [29.15 370 | 31.37 260 | 32.07 175
760 | 32.79 425 | 36.05 295 | 36.05 195
970 | 38.45 495 | 39.03 327 | 39.60 215

D5.2

Assume that the angular velocity () of the device is a func-
tion of wind speed U, air density p and viscosity u, rod
length [, and cup diameter d. For all data, assume air is at
1 atm and 20°C. Defie appropriate pi groups for this prob-
lem, and plot the data in this dimensionless manner. Com-
ment on the possible uncertainty of the results.

As a design application, suppose we are to use this
anemometer geometry for a large-scale (d = 30 cm) airport
wind anemometer. If wind speeds vary up to 25 m/s and we
desire an average rotation rate {) = 120 r/min, what should
be the proper rod length? What are possible limitations of
your design? Predict the expected ) (in r/min) of your design
as affected by wind speeds from O to 25 m/s.

By analogy with the cylinder drag data in Fig. 5.3b,
spheres also show a strong roughness effect on drag, at
least in the Reynolds number range 4 E4 < Rep < 3 ES,
which accounts for the dimpling of golf balls to increase
their distance traveled. Some experimental data for
roughened spheres [33] are given in Fig. D5.2. The figure
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This chapter is mostly about pipe flow. The photo shows a dramatic pipe-
engineering achievement: the Trans-Alaska Pipeline System (TAPS). The
pipeline runs almost 800 miles (1300 km), from Prudhoe Bay in the north
to the port of Valdez in the south. It was built between 1975 and 1977 at
a cost of eight billion dollars. There are 11 pumping stations, each with
four pumps. The single pipe is 48 in (1.22 m) in diameter and is capable
of carrying up to two million barrels (333,000 m®) of oil per day, on a
trip that takes almost six days. Since the oil temperature is typically about
60°C, many portions are cooled by an ammonia system to avoid damage
to the permafrost. Why does the pipeline zigzag? Shoddy construction?
No, the zigzag allows for flexible pipeline movement if disturbed by earth-
quakes, avalanches, or sudden temperature changes. (Photo @Corbis RF )



6.1 Reynolds Number Regimes

Chapter 6
Viscous Flow in Ducts

Motivation. This chapter is completely devoted to an important practical fluids engi-
neering problem: flow in ducts with various velocities, various fluids, and various duct
shapes. Piping systems are encountered in almost every engineering design and thus
have been studied extensively. There is a small amount of theory plus a large amount
of experimentation.

The basic piping problem is this: Given the pipe geometry and its added compo-
nents (such as fittings, valves, bends, and diffusers) plus the desired flow rate and
fluid properties, what pressure drop is needed to drive the flow? Of course, it may be
stated in alternative form: Given the pressure drop available from a pump, what flow
rate will ensue? The correlations discussed in this chapter are adequate to solve most
such piping problems.

Now that we have derived and studied the basic flow equations in Chap. 4, you would
think that we could just whip off myriad beautiful solutions illustrating the full range
of fluid behavior, of course expressing all these educational results in dimensionless
form, using our new tool from Chap. 5, dimensional analysis.

The fact of the matter is that no general analysis of fluid motion yet exists. There
are several dozen known particular solutions, there are many approximate digital com-
puter solutions, and there are a great many experimental data. There is a lot of the-
ory available if we neglect such important effects as viscosity and compressibility
(Chap. 8), but there is no general theory and there may never be. The reason is that
a profound and vexing change in fluid behavior occurs at moderate Reynolds num-
bers. The flow ceases being smooth and steady (laminar) and becomes fluctuating and
agitated (furbulent). The changeover is called transition to turbulence. In Fig. 5.3a
we saw that transition on the cylinder and sphere occurred at about Re = 3 X 10°,
where the sharp drop in the drag coefficient appeared. Transition depends on many
effects, such as wall roughness (Fig. 5.30) or fluctuations in the inlet stream, but the
primary parameter is the Reynolds number. There are a great many data on transition
but only a small amount of theory [1 to 3].

Turbulence can be detected from a measurement by a small, sensitive instrument
such as a hot-wire anemometer (Fig. 6.29¢) or a piezoelectric pressure transducer. The
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=

Fig. 6.1 The three regimes of vis-
cous flow: (@) laminar flow at low
Re; (b) transition at intermediate

Re; (c¢) turbulent flow at high Re.

u
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disturbances Intermittent e Bulence
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turbulence
— ] — —
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flow will appear steady on average but will reveal rapid, random fluctuations if
turbulence is present, as sketched in Fig. 6.1. If the flow is laminar, there may be
occasional natural disturbances that damp out quickly (Fig. 6.1a). If transition is
occurring, there will be sharp bursts of intermittent turbulent fluctuation (Fig. 6.1b)
as the increasing Reynolds number causes a breakdown or instability of laminar
motion. At sufficiently large Re, the flow will fluctuate continually (Fig. 6.1¢) and is
termed fully turbulent. The fluctuations, typically ranging from 1 to 20 percent of the
average velocity, are not strictly periodic but are random and encompass a continu-
ous range, or spectrum, of frequencies. In a typical wind tunnel flow at high Re, the
turbulent frequency ranges from 1 to 10,000 Hz, and the wavelength ranges from
about 0.01 to 400 cm.

EXAMPLE 6.1

The accepted transition Reynolds number for flow in a circular pipe is Re, . = 2300. For
flw through a 5-cm-diameter pipe, at what velocity will this occur at 20°C for ( a) airflow
and (b) water flow?

Solution

Almost all pipe flow formulas are based on the average velocity V = Q/A, not centerline or
any other point velocity. Thus transition is specified at pVd/u =~ 2300. With d known, we
introduce the appropriate flid properties at 20°C from Tables A.3 and A.4:

Vd  (1.205 kg/m)V(0.05
(a) Air: pvd _ ( gmVOOS M) _ 300 or  v=~072
1.80 E-5 kg/(m - s) S
pVd (998 kg/m*)V(0.05 m) m
b) Wat AL = 2300 V = 0.046 =
(b) Water 0.001 kg/(m - s) of s

These are very low velocities, so most engineering air and water pipe flows are turbulent,
not laminar. We might expect laminar duct flow with more viscous fluids such as lubricat-
ing oils or glycerin.

In free-surface flows, turbulence can be observed directly. Figure 6.2 shows liquid

flow issuing from the open end of a tube. The low-Reynolds-number jet (Fig. 6.2a) is
smooth and laminar, with the fast center motion and slower wall flow forming different



Fig. 6.2 Flow issuing at constant
speed from a pipe: (a) high-
viscosity, low-Reynolds-number,
laminar flow; (b) low-viscosity,
high-Reynolds-number, turbulent
flow. (National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., ©1972.)
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Flow ——

Fig. 6.3 Formation of a turbulent
puff in pipe flow: (a) and (b) near
the entrance; (¢) somewhat down-
stream; (d) far downstream. (Cour-
tesy of Cambridge University
PressP. R. Bandyopadhyay, @[
“Aspects of the Equilibrium Puff
in Transitional Pipe Flow,” Journal
of Fluid Mechanics, vol. 163,
1986, pp. 439458.)

trajectories joined by a liquid sheet. The higher-Reynolds-number turbulent flow (Fig.
6.2b) is unsteady and irregular but, when averaged over time, is steady and predictable.

How did turbulence form inside the pipe? The laminar parabolic flow profile, which
is similar to Eq. (4.146), became unstable and, at Re,; = 2300, began to form “slugs”
or “puffs” of intense turbulence. A puff has a fast-moving front and a slow-moving
rear and may be visualized by experimenting with glass tube flow. Figure 6.3 shows
a puff as photographed by Bandyopadhyay [45]. Near the entrance (Fig. 6.3a and b)
there is an irregular laminar—turbulent interface, and vortex roll-up is visible. Further
downstream (Fig. 6.3¢) the puff becomes fully turbulent and very active, with helical
motions visible. Far downstream (Fig. 6.3d) the puff is cone-shaped and less active,
with a fuzzy ill-defined interface, sometimes called the “relaminarization” region.

A complete description of the statistical aspects of turbulence is given in Ref. 1, while
theory and data on transition effects are given in Refs. 2 and 3. At this introductory
level we merely point out that the primary parameter affecting transition is the Reynolds
number. If Re = UL/v, where U is the average stream velocity and L is the “width,”
or transverse thickness, of the shear layer, the following approximate ranges occur:

0 <Re < 1: highly viscous laminar “creeping” motion
1 <Re < 100: laminar, strong Reynolds number dependence
100 < Re < 10* laminar, boundary layer theory useful
10° <Re < 10* transition to turbulence
10* <Re < 10°% turbulent, moderate Reynolds number dependence
10°<Re < o: turbulent, slight Reynolds number dependence

These representative ranges vary somewhat with flow geometry, surface roughness,
and the level of fluctuations in the inlet stream. The great majority of our analyses
are concerned with laminar flow or with turbulent flow, and one should not normally
design a flow operation in the transition region.



Historical Outline

Fig. 6.4 Experimental evidence of
transition for water flow in a §-in
smooth pipe 10 ft long.
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Since turbulent flow is more prevalent than laminar flow, experimenters have observed
turbulence for centuries without being aware of the details. Before 1930 flow instru-
ments were too insensitive to record rapid fluctuations, and workers simply reported
mean values of velocity, pressure, force, and so on. But turbulence can change the mean
values dramatically, as with the sharp drop in drag coefficient in Fig. 5.3. A German
engineer named G. H. L. Hagen first reported in 1839 that there might be two regimes

of viscous flow. He measured water flow in long brass pipes and deduced a pressure-
drop law:

L
Ap = (const) R—g + entrance effect 6.1)

This is exactly our laminar flow scaling law from Example 5.4, but Hagen did not
realize that the constant was proportional to the fluid viscosity.

The formula broke down as Hagen increased Q beyond a certain limit—that is,
past the critical Reynolds number—and he stated in his paper that there must be a
second mode of flow characterized by “strong movements of water for which Ap
varies as the second power of the discharge. . . .” He admitted that he could not clar-
ify the reasons for the change.

A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies
linearly with V = Q/A up to about 1.1 ft/s, where there is a sharp change. Above
about V = 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power

120
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Dye filament
Needle \

Tank

(@)

3 IR
e

(©)
Fig. 6.5 Reynolds’ sketches of pipe
flow transition: (a) low-speed, lam-
inar flow; (b) high-speed, turbulent
flow; (c) spark photograph of con-
dition (b). (From Ref. 4.)

6.2 Internal versus External
Viscous Flows

Ap = V'™ seems impossible on dimensional grounds but is easily explained when
the dimensionless pipe flow data (Fig. 5.10) are displayed.

In 1883 Osborne Reynolds, a British engineering professor, showed that the change
depended on the parameter pVd/w, now named in his honor. By introducing a dye
streak into a pipe flow, Reynolds could observe transition and turbulence. His sketches
[4] of the flow behavior are shown in Fig. 6.5.

If we examine Hagen’s data and compute the Reynolds number at V = 1.1 ft/s,
we obtain Re; = 2100. The flow became fully turbulent, V = 2.2 ft/s, at Re, = 4200.
The accepted design value for pipe flow transition is now taken to be

Rey o =~ 2300 (6.2)

This is accurate for commercial pipes (Fig. 6.13), although with special care in pro-
viding a rounded entrance, smooth walls, and a steady inlet stream, Re, . can be
delayed until much higher values. The study of transition in pipe flow, both experi-
mentally and theoretically, continues to be a fascinating topic for researchers, as dis-
cussed in a recent review article [55]. Note: The value of 2300 is for transition in
pipes. Other geometries, such as plates, airfoils, cylinders, and spheres, have com-
pletely different transition Reynolds numbers.

Transition also occurs in external flows around bodies such as the sphere and cylin-
der in Fig. 5.3. Ludwig Prandtl, a German engineering professor, showed in 1914 that
the thin boundary layer surrounding the body was undergoing transition from lami-
nar to turbulent flow. Thereafter the force coefficient of a body was acknowledged to
be a function of the Reynolds number [Eq. (5.2)].

There are now extensive theories and experiments of laminar flow instability that
explain why a flow changes to turbulence. Reference 5 is an advanced textbook on
this subject.

Laminar flow theory is now well developed, and many solutions are known [2, 3],
but no analyses can simulate the fine-scale random fluctuations of turbulent flow."
Therefore most turbulent flow theory is semiempirical, based on dimensional analy-
sis and physical reasoning; it is concerned with the mean flow properties only and the
mean of the fluctuations, not their rapid variations. The turbulent flow “theory” pre-
sented here in Chaps. 6 and 7 is unbelievably crude yet surprisingly effective. We
shall attempt a rational approach that places turbulent flow analysis on a firm physi-
cal basis.

Both laminar and turbulent flow may be either internal (that is, “bounded” by walls)
or external and unbounded. This chapter treats internal flows, and Chap. 7 studies
external flows.

An internal flow is constrained by the bounding walls, and the viscous effects
will grow and meet and permeate the entire flow. Figure 6.6 shows an internal flow
in a long duct. There is an entrance region where a nearly inviscid upstream flow
converges and enters the tube. Viscous boundary layers grow downstream, retard-
ing the axial flow u(r, x) at the wall and thereby accelerating the center core flow

"However, direct numerical simulation (DNS) of low-Reynolds-number turbulence is now quite
common [32].



Fig. 6.6 Developing velocity
profiles and pressure changes in
the entrance of a duct flow.
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to maintain the incompressible continuity requirement
0= Ju dA = const (6.3)

At a finite distance from the entrance, the boundary layers merge and the inviscid
core disappears. The tube flow is then entirely viscous, and the axial velocity adjusts
slightly further until at x = L, it no longer changes with x and is said to be fully
developed, u = u(r) only. Downstream of x = L, the velocity profile is constant, the
wall shear is constant, and the pressure drops linearly with x, for either laminar or
turbulent flow. All these details are shown in Fig. 6.6.

Dimensional analysis shows that the Reynolds number is the only parameter affect-
ing entrance length. If

Lo=fdVipw V=2

L Vd
then == g<”7) = g(Rey) (6.4)

For laminar flow [2, 3], the accepted correlation is

L
j ~ (.06 Re, laminar (6.5)
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The maximum laminar entrance length, at Re,.; = 2300, is L, = 1384, which is the
longest development length possible.

In turbulent flow, the boundary layers grow faster, and L, is relatively shorter. For
decades, the writer has favored a sixth-power-law estimate, L.,/d = 4.4 Rel/°, but
recent CFD results, communicated by Fabien Anselmet, and separately by Sukanta

Dash, indicate that a better turbulent entrance-length correlation is

L
j ~ 1.6Re/* for Re, = 10’ (6.6)
Some computed turbulent entrance-length estimates are thus
Re, | 4000 | 10* | 10° | 10° | 107
L/d ‘ 13 ‘ 16 ‘ 28 ‘ 51 ‘ 90

Now 90 diameters may seem “long,” but typical pipe flow applications involve an
L/d value of 1000 or more, in which case the entrance effect may be neglected and
a simple analysis made for fully developed flow. This is possible for both laminar and
turbulent flows, including rough walls and noncircular cross sections.

EXAMPLE 6.2

A }-in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 20°C. What frac-
tion of this pipe is taken up by the entrance region?

Solution

Convert

0.00223 ft/
0 = (5 gal/min) ————> = 0.0111 /s
1 gal/min

The average velocity is

0.0111 f¢/
9 _ OOUIRIS gty
A (m/DH[(G/12) ft]
From Table 1.4 read for water » = 1.01 X 10°® m%*s = 1.09 X 10> ft*/s. Then the pipe
Reynolds number is

Vd _ 8.17 fus)[(/12) ft]

Res = = 7109 x 105 s

= 31,300

This is greater than 4000; hence the flow is fully turbulent, and Eq. (6.6) applies for entrance
length:

L
j ~ 1.6 Re/* = (1.6)(31,300)"* = 21

The actual pipe has L/d = (60 ft)/ [(%/ 12)ft] = 1440. Hence the entrance region takes up the
fraction

&—A—OMS—]S‘? A

7 = 1440 ] 5% ns.
This is a very small percentage, so that we can reasonably treat this pipe flow as essentially
fully developed.
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Fig. 6.7 Control volume of steady,
fully developed flow between two
sections in an inclined pipe.

6.3 Head Loss—The Friction Factor 355

Shortness can be a virtue in duct flow if one wishes to maintain the inviscid core.
For example, a “long” wind tunnel would be ridiculous, since the viscous core would
invalidate the purpose of simulating free-flight conditions. A typical laboratory low-
speed wind tunnel test section is 1 m in diameter and 5 m long, with V = 30 m/s. If
we take v,, = 1.51 X 107> m%/s from Table 1.4, then Re, = 1.99 X 10° and, from
Eq. (6.6), L./d = 49. The test section has L/d = 5, which is much shorter than the
development length. At the end of the section the wall boundary layers are only 10
cm thick, leaving 80 cm of inviscid core suitable for model testing.

An external flow has no restraining walls and is free to expand no matter how thick
the viscous layers on the immersed body may become. Thus, far from the body the
flow is nearly inviscid, and our analytical technique, treated in Chap. 7, is to patch
an inviscid-flow solution onto a viscous boundary-layer solution computed for the
wall region. There is no external equivalent of fully developed internal flow.

When applying pipe flow formulas to practical problems, it is customary to use a con-
trol volume analysis. Consider incompressible steady flow between sections 1 and 2
of the inclined constant-area pipe in Fig. 6.7. The one-dimensional continuity rela-
tion, Eq. (3.30), reduces to

0, =0,=const or Vi=V,=V

since the pipe is of constant area. The steady flow energy equation (3.75) becomes

V2 V2
(£+a—+z) =<£+a—+z> +hf 6.7)
1 P8 2g 2

pg 2g
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since there is no pump or turbine between 1 and 2. For fully developed flow, the veloc-
ity profile shape is the same at sections 1 and 2. Thus a; = @, and, since V; = V,,
Eq. (6.7) reduces to head loss versus pressure drop and elevation change:

A
h = (2, —Zz)+<ﬂ—&)=Az+—p (6.8)
pg P8 pg

The pipe head loss equals the change in the sum of pressure and gravity head—that
is, the change in height of the hydraulic grade line (HGL).

Finally, apply the momentum relation (3.40) to the control volume in Fig. 6.7,
accounting for applied x-directed forces due to pressure, gravity, and shear:

> F, = Ap(mR*) + pg(wR)L sin ¢ — 7,2mR)L = m(V, — V) = 0 (6.9a)
Rearrange this and we find that the head loss is also related to wall shear stress:

A 27, L 41, L
ey 2L dnl

6.9b
pg pg R pgd (6:90)

where we have substituted Az = L sin ¢ from the geometry of Fig. 6.7. Note that,
regardless of whether the pipe is horizontal or tilted, the head loss is proportional to
the wall shear stress.

How should we correlate the head loss for pipe flow problems? The answer was
given a century and a half ago by Julius Weisbach, a German professor who in 1850
published the first modern textbook on hydrodynamics. Equation (6.95) shows that i,
is proportional to (L/d), and data such as Hagen’s in Fig. 6.6 show that, for turbulent
flow, A is approximately proportional to V2. The proposed correlation, still as effec-
tive today as in 1850, is

2

L
hy=f—

p i where f = fcn(Rey, 2, duct shape) (6.10)

The dimensionless parameter fis called the Darcy friction factor, after Henry Darcy
(1803-1858), a French engineer whose pipe flow experiments in 1857 first estab-
lished the effect of roughness on pipe resistance. The quantity ¢ is the wall rough-
ness height, which is important in turbulent (but not laminar) pipe flow. We added
the “duct shape” effect in Eq. (6.10) to remind us that square and triangular and
other noncircular ducts have a somewhat different friction factor than a circular
pipe. Actual data and theory for friction factors will be discussed in the sections
that follow.
By equating Egs. (6.9) and (6.10) we find an alternative form for friction factor:

_ 87,
pV?

f (6.11)
For noncircular ducts, we must interpret 7,, to be an average value around the duct
perimeter. For this reason Eq. (6.10) is preferred as a unified definition of the Darcy
friction factor.
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Analytical solutions can be readily derived for laminar flows, either circular or non-
circular. Consider fully developed Poiseuille flow in a round pipe of diameter d, radius
R. Complete analytical results were given in Sect. 4.10. Let us review those formu-
las here:

_ (1_r_2> here _(_d_P>R_2 and (_d_l’>_<w>
1 Hma ) " tmax dx) 4u dx L

v @t _ (Ap + pgAZ>R_2

A 2 L 8
R* (Ap + pgA
0= JudA = 7RV = W—<w) (6.12)
8 L
_ % _4pV 8uV 5<Ap + pgAz>
Tw = Mgk T TR d 2 L

_ 32uLlV 128ulQ
pgd®  mpgd

The paraboloid velocity profile has an average velocity V which is one-half of the
maximum velocity. The quantity Ap is the pressure drop in a pipe of length L; that
is, (dp/dx) is negative. These formulas are valid whenever the pipe Reynolds number,
Re; = pVd/pu, is less than about 2300. Note that 7,, is proportional to V (see Fig. 6.6)
and is independent of density because the fluid acceleration is zero. Neither of these
is true in turbulent flow.

With wall shear stress known, the Poiseuille flow friction factor is easily determined:

hy

_ 8Tw,lam 8(8MV/d) - 64 B ﬁ

fam == = T VT T Ndm Re,

(6.13)

In laminar flow, the pipe friction factor decreases inversely with Reynolds number.
This famous formula is effective, but often the algebraic relations of Egs. (6.12) are
more direct for problems.

EXAMPLE 6.3

An oil with p = 900 kg/m® and » = 0.0002 m?/s flows upward through an inclined pipe
as shown in Fig. E6.3. The pressure and elevation are known at sections 1 and 2, 10 m
apart. Assuming steady laminar flow, (a) verify that the flow is up, (b) compute /. between
1 and 2, and compute (¢) Q, (d) V, and (e) Re,. Is the flow really laminar?

Solution

For later use, calculate

w = pv = (900 kg/m*)(0.0002 m%s) = 0.18 kg/(m - s)
z, = AL sin 40° = (10 m)(0.643) = 6.43 m
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s p, =350,000 Pa, z; =0

The flow goes in the direction of falling HGL; therefore compute the hydraulic grade-line
height at each section:

HGL LR g g 390000 4 6
= — = ——————— =3965m
LTAaT o, 900(9.807)
D> 250,000
HGL, =z, + —= =643 + ———— = 3475
TR e 900(9.807) m
The HGL is lower at section 2; hence the flow is up from 1 to 2 as assumed. Ans. (a)

Part (b) The head loss is the change in HGL:
hy = HGL; — HGL, = 39.65m — 34.75m = 49m Ans. (b)
Half the length of the pipe is quite a large head loss.
Part (c¢) We can compute Q from the various laminar flow formulas, notably Eq. (6.12):

mpgd’hy _ m(900)(9.807)(0.06)*(4.9)

= = 0.0076 m’/ Ans.
Q= osuL 128(0.18)(10) s ns. (c)
Part (d) Divide Q by the pipe area to get the average velocity:
0 0.0076
V=—7= =27m/ Ans. (d
TR m(0.03) e rs. (d)
Part (e) With V known, the Reynolds number is
Vd  2.7(0.06)
Re, = —=——"">7-—= 2810 Ans.
. 0.0002 2, (5

This is well below the transition value Re; = 2300, so we are fairly certain the flow is
laminar.

Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms,
newtons) for all variables we avoid the need for any conversion factors in the calcula-
tions.
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EXAMPLE 6.4

A liquid of specific weight pg = 58 Iby/ft® flows by gravity through a 1-ft tank and a 1-ft
capillary tube at a rate of 0.15 ft*/h, as shown in Fig. E6.4. Sections 1 and 2 are at atmo-
spheric pressure. Neglecting entrance effects, compute the viscosity of the liquid.

Solution

* System sketch: Figure E6.4 shows L =1 ft, d = 0.004 ft, and Q = 0.15 ft>/h.

* Assumptions: Laminar, fully developed, incompressible (Poiseuille) pipe flow. Atmos-
pheric pressure at sections 1 and 2. Negligible velocity at surface, V; = 0.

* Approach: Use continuity and energy to find the head loss and thence the viscosity.

* Property values: Given pg = 58 Ibf/ft>, figure out p = 58/32.2 = 1.80 slug/ft’ if needed.

* Solution step 1: From continuity and the known flow rate, determine V,:

y_Q_ 0 _ (0I5/3600)ftYs
2T A, (mdd (w/4)(0.004 fr)

= 3.32 ft/s

Write the energy equation between 1 and 2, canceling terms, and find the head loss:

2 2
&+alvl+z1:&+“2V2+Z2+hf
pg 28 pg  2g
a,V2 (2.0)(3.32 ft/s)
hy=z — 2, — =20ft —0ft — ———"= > — | 66ft
or FTAaT 2" 5, 2322 fUs)

* Comment: We introduced o, = 2.0 for laminar pipe flow from Eq. (3.76). If we forgot
a5, we would have calculated i, = 1.83 ft, a 10 percent error.

Solution step 2: With head loss known, the viscosity follows from the laminar formula
in Egs. (6.12):

32wV 32u(1.0 ft)(3.32 ft/s)
(pg)d® (58 Ibf/ft*)(0.004 ft)*
* Comments: We didn’t need the value of p—the formula contains pg, but who knew?

Note also that L in this formula is the pipe length of 1 ft, not the total elevation change.
Final check: Calculate the Reynolds number to see if it is less than 2300 for laminar flow:

slug

A
ft-s s

hy = 1.66 ft = solve for uw = 1.45E-5

Ve 1.80 slug/ft*)(3.32 ft/s)(0.004 ft
Re, = Ld = (SR B i) (D00 i) =~ 1650 Yes, laminar.
"w (1.45E-5 slug/ft-s)

* Comments: So we did need p after all to calculate Re,; Unexpected comment: For this
head loss, there is a second (turbulent) solution, as we shall see in Example 6.8.

Throughout this chapter we assume constant density and viscosity and no thermal
interaction, so that only the continuity and momentum equations are to be solved for
velocity and pressure

. ou Jdv  Iw
Continuity: —+—+—=0
ax dy 0z
av (6.14)
Momentum: p— =—Vp + pg + u V?V

dt
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Reynolds’Time-Averaging
Concept

Fig. 6.8 Definition of mean and
fluctuating turbulent variables: (a)
velocity; (b) pressure.

subject to no slip at the walls and known inlet and exit conditions. (We shall save our
free-surface solutions for Chap. 10.)

We will not work with the differential energy relation, Eq. (4.53), in this chapter, but
it is very important, both for heat transfer calculations and for general understanding of
duct flow processes. There is work being done by pressure forces to drive the fluid
through the duct. Where does this energy go? There is no work done by the wall shear
stresses, because the velocity at the wall is zero. The answer is that pressure work is
balanced by viscous dissipation in the interior of the flow. The integral of the dissipa-
tion function ®, from Eq. (4.50), over the flow field will equal the pressure work. An
example of this fundamental viscous flow energy balance is given in Problem C6.7.

Both laminar and turbulent flows satisfy Eqs. (6.14). For laminar flow, where there
are no random fluctuations, we go right to the attack and solve them for a variety of
geometries [2, 3], leaving many more, of course, for the problems.

For turbulent flow, because of the fluctuations, every velocity and pressure term in
Eqgs. (6.14) is a rapidly varying random function of time and space. At present our
mathematics cannot handle such instantaneous fluctuating variables. No single pair of
random functions V(x, y, z, ) and p(x, y, z, t) is known to be a solution to Egs. (6.14).
Moreover, our attention as engineers is toward the average or mean values of veloc-
ity, pressure, shear stress, and the like in a high-Reynolds-number (turbulent) flow.
This approach led Osborne Reynolds in 1895 to rewrite Eqs. (6.14) in terms of mean
or time-averaged turbulent variables.
The time mean u of a turbulent function u(x, y, z, ) is defined by

1 (7
u= —J udt (6.15)
T'Jo
where T is an averaging period taken to be longer than any significant period of the
fluctuations themselves. The mean values of turbulent velocity and pressure are illus-
trated in Fig. 6.8. For turbulent gas and water flows, an averaging period 7 = 5 s is

usually quite adequate.

(a) (b)
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The fictuation u ' is defined as the deviation of u from its average value
u =u-—u (6.16)
also shown in Fig. 6.8. It follows by definition that a fluctuation has zero mean value:
_ 1 ("
u’=—J(u—u)dt=u—u=0 (6.17)
T Jo

However, the mean square of a fluctuation is not zero and is a measure of the infen-
sity of the turbulence:

1 T
u?=—| u?dr#0 (6.18)
T )

Nor in general are the mean fluctuation products such as u'v" and u'p’ zero in a typ-
ical turbulent flow.
Reynolds’ idea was to split each property into mean plus fluctuating variables:

u=u+u v=v+v w=w+w p=p-+p (6.19)

Substitute these into Egs. (6.14), and take the time mean of each equation. The con-
tinuity relation reduces to

ou Jdv  ow

=0 (6.20)
ax dy 0z

which is no different from a laminar continuity relation.

However, each component of the momentum equation (6.14b), after time averag-
ing, will contain mean values plus three mean products, or correlations, of fluctuat-
ing velocities. The most important of these is the momentum relation in the main-
stream, or x, direction, which takes the form

du _ _9p .0 ( o ,2)
_— = —— 0 — — — U
d dt ox P ax Max 4

+6(8u ,,>+a<au >
- — — puUv — — — puw
dy May & Jz MSZ P

The three correlation terms —pu'2, —pu'v’, and —pu'w’, are called turbulent stresses
because they have the same dimensions and occur right alongside the newtonian (lam-
inar) stress terms w(du/dx) and so on. Actually, they are convective acceleration terms
(which is why the density appears), not stresses, but they have the mathematical effect
of stress and are so termed almost universally in the literature.

The turbulent stresses are unknown a priori and must be related by experiment to geom-
etry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and boundary layer
flow, the stress —pu'v’, associated with direction y normal to the wall is dominant, and we
can approximate with excellent accuracy a simpler streamwise momentum equation

(6.21)

di_ o 6)
P ax P& dy '
du —
where T=u— — pu'v = Tpym T T (6.23)
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Fig. 6.9 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

The Logarithmic Overlap Law

turbulent
layer

u(x,y) —»

Overlap layer

Viscous wall layer

(a) ()

Figure 6.9 shows the distribution of 7,,, and 7, from typical measurements across
a turbulent shear layer near a wall. Laminar shear is dominant near the wall (the wall
layer), and turbulent shear dominates in the outer layer. There is an intermediate
region, called the overlap layer, where both laminar and turbulent shear are impor-
tant. These three regions are labeled in Fig. 6.9.

In the outer layer 7, is two or three orders of magnitude greater than 7,,, and
vice versa in the wall layer. These experimental facts enable us to use a crude but
very effective model for the velocity distribution u(y) across a turbulent wall layer.

We have seen in Fig. 6.9 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u. Let 7,, be the wall
shear stress, and let 6 and U represent the thickness and velocity at the edge of the
outer layer, y = 6.

For the wall layer, Prandtl deduced in 1930 that # must be independent of the shear
layer thickness:

u = flu, 7, p, ) (6.24)
By dimensional analysis, this is equivalent to
* 12
ut =% = F(&> u* = <&) (6.25)
u 14 P

Equation (6.25) is called the law of the wall, and the quantity u* is termed the friction
velocity because it has dimensions {LT '}, although it is not actually a flow velocity.

Subsequently, Kéma in 1933 deduced that u in the outer layer is independent of
molecular viscosity, but its deviation from the stream velocity U must depend on the
layer thickness & and the other properties:

(U = oyer = &8, 70» P> Y) (6.26)



Fig. 6.10 Experimental verification
of the inner, outer, and overlap
layer laws relating velocity profiles
in turbulent wall flow.
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Again, by dimensional analysis we rewrite this as

U—u y
u* _G(5>

where u* has the same meaning as in Eq. (6.25). Equation (6.27) is called the velocity-
defect law for the outer layer.

Both the wall law (6.25) and the defect law (6.27) are found to be accurate for a
wide variety of experimental turbulent duct and boundary layer flows [1 to 3]. They
are different in form, yet they must overlap smoothly in the intermediate layer. In
1937 C. B. Millikan showed that this can be true only if the overlap layer velocity
varies logarithmically with y:

6.27)

u 1 yu*
—=—1In
u* K

+ B overlap layer (6.28)

Over the full range of turbulent smooth wall flows, the dimensionless constants « and
B are found to have the approximate values k = 0.41 and B = 5.0. Equation (6.28)
is called the logarithmic overlap layer.

Thus by dimensional reasoning and physical insight we infer that a plot of u
versus In y in a turbulent shear layer will show a curved wall region, a curved
outer region, and a straight-line logarithmic overlap. Figure 6.10 shows that this

30
Outer law profiles:

Strong increasing pressure 7
Flat plate flow "/

25 — Pipe flow /
Strong decreasing pressure

20 — Linear ut=y+t

viscous
sublayer, ’ &
Eq. (6.29) @)
s [* \’ N
= &
1515 — /
+ ]
= Logarithmic
overlap
10 —
Experimental data
5 ==
0 | | |
1 10 102 10° 104
yr=u *

\%4
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Advanced Modeling Concepts

is exactly the case. The four outer-law profiles shown all merge smoothly with
the logarithmic overlap law but have different magnitudes because they vary in
external pressure gradient. The wall law is unique and follows the linear viscous
relation

ut=— = =yt (6.29)

from the wall to about y© = 5, thereafter curving over to merge with the logarithmic
law at about y© = 30.

Believe it or not, Fig. 6.10, which is nothing more than a shrewd correlation of
velocity profiles, is the basis for most existing “theory” of turbulent shear flows.
Notice that we have not solved any equations at all but have merely expressed the
streamwise velocity in a neat form.

There is serendipity in Fig. 6.10: The logarithmic law (6.28), instead of just
being a short overlapping link, actually approximates nearly the entire velocity
profile, except for the outer law when the pressure is increasing strongly down-
stream (as in a diffuser). The inner wall law typically extends over less than 2
percent of the profile and can be neglected. Thus we can use Eq. (6.28) as an
excellent approximation to solve nearly every turbulent flow problem presented
in this and the next chapter. Many additional applications are given in Refs. 2
and 3.

Turbulence modeling is a very active field. Scores of papers have been published to
more accurately simulate the turbulent stresses in Eq. (6.21) and their y and z com-
ponents. This research, now available in advanced texts [1, 13, 19], goes well beyond
the present book, which is confined to the use of the logarithmic law (6.28) for pipe
and boundary layer problems. For example, L. Prandtl, who invented boundary layer
theory in 1904, later proposed an eddy viscosity model of the Reynolds stress term in
Eq. (6.23):

—pu'v =Ty = M,@ where  u, = p12|@| (6.30)

dy dy

The term u,, which is a property of the fiw, not the fluid, is called the eddy viscos-
ity and can be modeled in various ways. The most popular form is Eq. (6.30), where
[ is called the mixing length of the turbulent eddies (analogous to mean free path in
molecular theory). Near a solid wall, / is approximately proportional to distance from
the wall, and Kdma suggested

|l = ky where k = Kama's constant = 0.41 (6.31)

As a homework assignment, Prob. P6.40, you may show that Eqgs. (6.30) and (6.31)
lead to the logarithmic law (6.28) near a wall.

Modern turbulence models approximate three-dimensional turbulent flows and
employ additional partial differential equations for such quantities as the turbulence
kinetic energy, the turbulent dissipation, and the six Reynolds stresses. For details,
see Refs. 1, 13, and 19.
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EXAMPLE 6.5

) ug=>5m/s Air at 20°C flws through a 14-cm-diameter tube under fully developed conditions. The
= =/ centerline velocity is uy = 5 m/s. Estimate from Fig. 6.10 (a) the friction velocity «* and
I y (b) the wall shear stress T,,.

-
Solution

E6.5 o System sketch: Figure E6.5 shows turbulent pipe flow with uy =5 m/s and R = 7 cm.
o Assumptions: Figure 6.10 shows that the logarithmic law, Eq. (6.28), is accurate all the
way to the center of the tube.
e Approach: Use Eq. (6.28) to estimate the unknown friction velocity u*.
« Property values: For air at 20°C, p = 1.205 kg/m® and v = 1.51E-5 m%/s.
e Solution step: Insert all the given data into Eq. (6.28) at y = R (the centerline). The
only unknown is u*:

uy 1 Ru* 5.0 m/s 1 (0.07 m)u*
— =—In + B or = In| —————

v 1.51E-5 m?%/s

u* K

wt 041
Although the logarithm makes it awkward, one can iterate this by hand to find u*. Or one
can open EES and type out a single statement of Eq. (6.28):
5.0/ustar = (1/0.41)*1n(0.07*ustar/1.51E-5) +5
Any nominal guess, e.g., u* = 1, will do. EES immediately returns the correct solution:
u* =~ 0.228 m/s Ans. (a)
7, = pu*? = (1.205)(0.228)* ~ 0.062 Pa Ans. (b)

e Comments: The logarithmic law solved everything! This is a powerful technique, using
an experimental velocity correlation to approximate general turbulent flows. You may
check that the Reynolds number Re, is about 40,000, definitely turbulent flow.

6.6 Turbulent Pipe Flow For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 6.5. Assume that Eq. (6.28) correlates the
local mean velocity u(r) all the way across the pipe

1. (R—ru*
w0 1@
u* K v

B (6.32)

where we have replaced y by R — r. Compute the average velocity from this profile:

o 1 (® [t (R—-ru*
V===—| u*|—In——+ B |2nrdr
A 7TR 0 K 14

1 2 Ru* 3
=—u¥ —In— + 2B — — (6.33)
2 K v K

Introducing k = 0.41 and B = 5.0, we obtain, numerically,

% Ru*
L <044 ln% + 134 (6.34)

u*
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This looks only marginally interesting until we realize that V/u* is directly related to

the Darcy friction factor:
Vv sz 172 8 172
i (T—> = J_” (6.35)

Moreover, the argument of the logarithm in (6.34) is equivalent to

Rut _sVdwr _ 1 (f)”2
d

8

V—Vv—ze (6.36)
Introducing (6.35) and (6.36) into Eq. (6.34), changing to a base-10 logarithm, and

rearranging, we obtain

1
7n ~ 1.99 log (Re, f?) — 1.02 (6.37)
In other words, by simply computing the mean velocity from the logarithmic law cor-
relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (6.37) in 1935 and then adjusted the constants
slightly to fit friction data better:

1
Fn = 2.0 log (Re, %) — 0.8 (6.38)

This is the accepted formula for a smooth-walled pipe. Some numerical values may
be listed as follows:

Rey, ‘ 4000 ‘ 10* ‘ 10° ‘ 10° ‘ 107 ‘ 108

f ‘ 0.0399 ‘ 0.0309 ‘ 0.0180 ‘ 0.0116 ‘ 0.0081 ‘ 0.0059

Thus f drops by only a factor of 5 over a 10,000-fold increase in Reynolds number.
Equation (6.38) is cumbersome to solve if Re, is known and f is wanted. There are
many alternative approximations in the literature from which f can be computed
explicitly from Re,:

0.316 Re; * 4000 < Re, < 10° H. Blasius (1911)

= Re,\ 2 .
! <1.8 log 6—69") Ref. 9 (6.39)

Blasius, a student of Prandtl, presented his formula in the first correlation ever made
of pipe friction versus Reynolds number. Although his formula has a limited range,
it illustrates what was happening in Fig. 6.4 to Hagen’s 1839 pressure-drop data. For
a horizontal pipe, from Eq. (6.39),

A L VZ 1/4L VZ
n=-"L=r2" = 0.316(L> =—
T pg d?2g pVd) d2g
or Ap =~ 0.158 Lp**u'"*d—5*v""* (6.40)

at low turbulent Reynolds numbers. This explains why Hagen’s data for pressure drop
begin to increase as the 1.75 power of the velocity, in Fig. 6.4. Note that Ap varies
only slightly with viscosity, which is characteristic of turbulent flow. Introducing



Effect of Rough Walls

Fig. 6.11 Comparison of laminar
and turbulent pipe flow velocity

profiles for the same volume flow:

(a) laminar flow; (b) turbulent
flow.
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Q - lﬂd [’ lnto Eq. (6.40), we Obtaln the alternati\/e fOI‘m
4
Ap = O.241Lp\/ I.LI/ d ) Ql' (6,41)

For a given flow rate Q, the turbulent pressure drop decreases with diameter even
more sharply than the laminar formula (6.12). Thus the quickest way to reduce
required pumping pressure is to increase the pipe size, although, of course, the larger
pipe is more expensive. Doubling the pipe size decreases Ap by a factor of about 27
for a given Q. Compare Eq. (6.40) with Example 5.7 and Fig. 5.10.
The maximum velocity in turbulent pipe flow is given by Eq. (6.32), evaluated at
r=20:
M Ly RUT g (6.42)
u* K v
Combining this with Eq. (6.33), we obtain the formula relating mean velocity to max-
imum velocity:

Vo (1+13VH! (6.43)
max
Some numerical values are
Re, ‘ 4000 ‘ 10* ‘ 10° ‘ 10° ‘ 107 ‘ 108
Vit | 0794 | osia | oss2 | o0s7 | oses | 09000

The ratio varies with the Reynolds number and is much larger than the value of 0.5
predicted for all laminar pipe flow in Eq. (6.12). Thus a turbulent velocity profile, as
shown in Fig. 6.11b, is very flat in the center and drops off sharply to zero at the wall.

It was not known until experiments in 1800 by Coulomb [6] that surface roughness
has an effect on friction resistance. It turns out that the effect is negligible for lami-
nar pipe flow, and all the laminar formulas derived in this section are valid for rough

Parabolic
curve

(a)

V—

Umax

(b)



368 Chapter 6 Viscous Flow in Ducts

0.10

0.08

0.06 —

0.04 — 0.00833

0.00397
\ 64 0.00198

\ R ed w
0.02 — 0.00099

~

Eqioleos )\E{“S)
\

0.01 | | |
10° 10* 103 10°

Re,
(b)

Fig. 6.12 Effect of wall roughness on turbulent pipe flow. (a) The logarithmic overlap
velocity profile shifts down and to the right; (b) experiments with sand-grain roughness by
Nikuradse [7] show a systematic increase of the turbulent friction factor with the roughness
ratio.

walls also. But turbulent flow is strongly affected by roughness. In Fig. 6.10 the lin-
ear viscous sublayer extends out only to y© = yu*/v = 5. Thus, compared with the
diameter, the sublayer thickness y, is only

Vs Sviu* 141
d d Re,f'?

For example, at Re,; = 10°, f = 0.0180, and y,/d = 0.001, a wall roughness of
about 0.001d will break up the sublayer and profoundly change the wall law in
Fig. 6.10.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12a, that a roughness height € will force the logarithm law pro-
file outward on the abscissa by an amount approximately equal to In €, where e =
eu*/v. The slope of the logarithm law remains the same, 1/k, but the shift outward
causes the constant B to be less by an amount AB ~ (1/k)In €.

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.12b. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with
the roughness ratio €/d. For any given €/d, the friction factor becomes constant (fully

(6.44)
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rough) at high Reynolds numbers. These points of change are certain values of " =
eu*/v:

eu*
> <5:  hydraulically smooth walls, no effect of roughness on friction
eu* .
5= - = 70: transitional roughness, moderate Reynolds number effect
eu*

— > 70:  fully rough flow, sublayer totally broken up and friction
v independent of Reynolds number

For fully rough flow, €™ > 70, the log law downshift AB in Fig. 6.12a is
1
AB = ;ln et —35 (6.45)
and the logarithm law modified for roughness becomes
P S Ly
u"=—Iny" +B—AB=—In=+ 85 (6.46)
K K €

The viscosity vanishes, and hence fully rough flow is independent of the Reynolds
number. If we integrate Eq. (6.46) to obtain the average velocity in the pipe, we obtain

Vv d
— =2441In—+ 32
u* €

eld

37 fully rough flow (6.47)

1
or ]M = —2.0log
There is no Reynolds number effect; hence the head loss varies exactly as the square
of the velocity in this case. Some numerical values of friction factor may be listed:
eld ‘ 0.00001 ‘ 0.0001 ‘ 0.001 ‘ 0.01 ‘ 0.05

f ‘ 0.00806 ‘ 0.0120 ‘ 0.0196 ‘ 0.0379 ‘ 0.0716

The friction factor increases by 9 times as the roughness increases by a factor of
5000. In the transitional roughness region, sand grains behave somewhat differ-
ently from commercially rough pipes, so Fig. 6.12b has now been replaced by the
Moody chart.

In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth
wall [Eq. (6.38)] and fully rough [Eq. (6.47)] relations into a clever interpolation
formula:

eld 2.51

1
Jm = -2.0 10g(3.7 + Red.f'”) (6.48)

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [8] into what is now called the Moody chart for pipe friction (Fig. 6.13). The
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Fig. 6.13 The Moody chart for pipe friction with smooth and rough walls. This chart is identical to Eq. (6.48) for turbulent flow.
(From Ref. 8, by permission of the ASME.)

Moody chart is probably the most famous and useful figure in fluid mechanics. It
is accurate to * 15 percent for design calculations over the full range shown in
Fig. 6.13. It can be used for circular and noncircular (Sec. 6.6) pipe flows and for
open-channel flows (Chap. 10). The data can even be adapted as an approximation to
boundary layer flows (Chap. 7).

Equation (6.48) is cumbersome to evaluate for f'if Re, is known, although it easily
yields to the EES Equation Solver. An alternative explicit formula given by Haaland

[33] as
1 6.9 e/d\'""
jm ~ —1.8 log [g + (ﬁ) } (6.49)
d .

varies less than 2 percent from Eq. (6.48).
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Table 6.1 Recommended
Roughness Values for Commercial

Ducts Material Condition ft mm Uncertainty, %
Steel Sheet metal, new 0.00016 0.05 +60
Stainless, new 0.000007 0.002 *+50
Commercial, new 0.00015 0.046 +30
Riveted 0.01 3.0 *70
Rusted 0.007 2.0 +50
Iron Cast, new 0.00085 0.26 +50
Wrought, new 0.00015 0.046 *20
Galvanized, new 0.0005 0.15 +40
Asphalted cast 0.0004 0.12 *50
Brass Drawn, new 0.000007 0.002 +50
Plastic Drawn tubing 0.000005 0.0015 *60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 +60
Rough 0.007 2.0 *50
Rubber Smoothed 0.000033 0.01 +60
‘Wood Stave 0.0016 0.5 +40

The shaded area in the Moody chart indicates the range where transition from lam-
inar to turbulent flow occurs. There are no reliable friction factors in this range, 2000
< Re, < 4000. Notice that the roughness curves are nearly horizontal in the fully
rough regime to the right of the dashed line.

From tests with commercial pipes, recommended values for average pipe rough-
ness are listed in Table 6.1.

EXAMPLE 6.6

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted
cast iron pipe carrying water with a mean velocity of 6 ft/s.

Solution

e System sketch: See Fig. 6.7 for a horizontal pipe, with Az = 0 and /; proportional to Ap.

o Assumptions: Turbulent flow, asphalted horizontal cast iron pipe, d = 0.5 ft, L = 200 ft.

* Approach: Find Re, and €/d; enter the Moody chart, Fig. 6.13; find f, then &, and Ap.

e Property values: From Table A.3 for water, converting to BG units, p = 998/515.38 =
1.94 slug/ft’, w = 0.001/47.88 = 2.09E-5 slug/(ft-s).

e Solution step 1: Calculate Re, and the roughness ratio. As a crutch, Moody provided
water and air values of “Vd” at the top of Fig. 6.13 to find Re,. No, let’s calculate it
ourselves:

pVd  (1.94 slug/f)(6 ft/s)(0.5 o)
Req === ~ 279,000 (turbulent
o 1Y 2.09E-5 slug/(ft - s) (turbulent)

This example was given by Moody in his 1944 paper [8].
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From Table 6.1, for asphalted cast iron, € = 0.0004 ft. Then calculate

e/d = (0.0004 ft)/(0.5 ft) = 0.0008

Solution step 2: Find the friction factor from the Moody chart or from Eq. (6.48). If
you use the Moody chart, Fig. 6.13, you need practice. Find the line on the right side for
e/d = 0.0008 and follow it back to the left until it hits the vertical line for Re,; = 2.79ES.
Read, approximately, f = 0.02 [or compute f = 0.0198 from Eq. (6.48), perhaps using
EES].

Solution step 3: Calculate h; from Eq. (6.10) and Ap from Eq. (6.8) for a horizontal
pipe:

LV 200 ft\ (6 ft/s)?
he=f=— = (0.02 ~ 451t Ans,
= f 2 = ¢ )( 0.5 ft) 2(32.2 fs?) s
Ap = pghy = (1.94 slug/ft)(32.2 fi/s)(4.5 ft) ~ 280 Ibf/fi’ Ans.

e Comments: In giving this example, Moody [8] stated that this estimate, even for clean
new pipe, can be considered accurate only to about =10 percent.

EXAMPLE 6.7

0il, with p = 900 kg/m® and v = 0.00001 m?*/s, flows at 0.2 m*/s through 500 m of 200-mm-
diameter cast iron pipe. Determine (@) the head loss and (b) the pressure drop if the pipe
slopes down at 10° in the 8w direction.

Solution

First compute the velocity from the known flow rate:

0 0.2 m’/s
Ve == """ —64m/
AR (0.1 m) s

Then the Reynolds number is

vd _ (6.4 m/s)(0.2 m)

Re, = — = 128,000
= T T0.00001 mYs :
From Table 6.1, € = 0.26 mm for cast iron pipe. Then
€ _ 0.26 mm 0.0013
d 200 mm ’

Enter the Moody chart on the right at e/d = 0.0013 (you will have to interpolate), and move
to the left to intersect with Re = 128,000. Read f = 0.0225 [from Eq. (6.48) for these val-
ues we could compute f = 0.0227]. Then the head loss is

2 500m (6.4 m/s)’

LV
hy = f=— = (0.0225) 2 OIS _ g Ans.
=2 = ¢ ) 02m 2081 m/sd) m ns. (@)
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From Eq. (6.9) for the inclined pipe,

A A
h=="L 4z —2="L1 Lsin10°
P8 pg

or Ap = pg[h; — (500 m) sin 10°] = pg(117 m — 87 m)

= (900 kg/m?)(9.81 m/s*)(30 m) = 265,000 kg/(m - s?) = 265,000 Pa  Ans. (b)

EXAMPLE 6.8

Repeat Example 6.4 to see whether there is any possible turbulent flow solution for a
smooth-walled pipe.

Solution

In Example 6.4 we estimated a head loss i~ 1.66 ft, assuming laminar exit flow (a = 2.0).
For this condition the friction factor is

d2g (0.004 t)(2)(32.2 ft/s?)
= h— =S = (1.66 ft ~ 0.0388
F=hy V2 ( ) (1.0 ft)(3.32 ft/s)?

For laminar flow, Re; = 64/f = 64/0.0388 =~ 1650, as we showed in Example 6.4. However,
from the Moody chart (Fig. 6.13), we see that f = 0.0388 also corresponds to a turbulent
smooth-wall condition, at Re,; = 4500. If the flow actually were turbulent, we should change
our kinetic energy factor to a =~ 1.06 [Eq. (3.77)], whence the corrected h, =~ 1.82 ft and
f = 0.0425. With f known, we can estimate the Reynolds number from our formulas:

Re, = 3250 [Eq. (6.38)] or Re, = 3400 [Eq. (6.39b)]
So the flow might have been turbulent, in which case the viscosity of the fluid would have been

_ pVvd _ 1.80(3.32)(0.004)

= 7.2 X 107 slug/(ft - Ans.
Re, 3300 slug/(ft - s) "

This is about 55 percent less than our laminar estimate in Example 6.4. The moral is to keep
the capillary-flow Reynolds number below about 1000 to avoid such duplicate solutions.

The Moody chart (Fig. 6.13) can be used to solve almost any problem involving fric-
tion losses in long pipe flows. However, many such problems involve considerable
iteration and repeated calculations using the chart because the standard Moody chart
is essentially a head loss chart. One is supposed to know all other variables, com-
pute Re,, enter the chart, find f, and hence compute A, This is one of four funda-
mental problems which are commonly encountered in pipe flow calculations:

1.
2.

Givend, L, and V or Q, p, u, and g, compute the head loss A, (head loss problem).

Given d, L, hy, p, u, and g, compute the velocity V or flow rate Q (flow rate
problem).

Given Q, L, hy, p, u, and g, compute the diameter d of the pipe (sizing problem).
Given Q, d, hy, p, u, and g, compute the pipe length L.
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Type 2 Problem:
Find the Flow Rate

Problems 1 and 4 are well suited to the Moody chart. We have to iterate to compute
velocity or diameter because both d and V are contained in the ordinate and the
abscissa of the chart.

There are two alternatives to iteration for problems of type 2 and 3: (a) prepara-
tion of a suitable new Moody-type chart (see Probs. P6.68 and P6.73); or (b) the use
of solver software, especially the Engineering Equation Solver, known as EES [47],
which gives the answer directly if the proper data are entered. Examples 6.9 and 6.11
include the EES approach to these problems.

Even though velocity (or flow rate) appears in both the ordinate and the abscissa on
the Moody chart, iteration for turbulent flow is nevertheless quite fast because f varies
so slowly with Re,. Alternately, in the spirit of Example 5.7, we could change the
scaling variables to (p, u, d) and thus arrive at dimensionless head loss versus dimen-
sionless velocity. The result is®

gd’h,  fRe;

= fen(R. h = =
e cn(Re,) where 14 I >

(6.50)
Example 5.7 did this and offered the simple correlation { = 0.155 Rel”, which is
valid for turbulent flow with smooth walls and Re; = 1 ES.

A formula valid for all turbulent pipe flows is found by simply rewriting the Cole-
brook interpolation, Eq. (6.48), in the form of Eq. (6.50):

eld | 1775 &hy
Re, = —(8))" log (ﬁ + ) =25 6.51)

Given {, we compute Re, (and hence velocity) directly. Let us illustrate these two
approaches with the following example.

EXAMPLE 6.9

0Oil, with p = 950 kg/m® and » = 2 E-5 m%/s, flows through a 30-cm-diameter pipe 100 m
long with a head loss of 8 m. The roughness ratio is €/d = 0.0002. Find the average veloc-
ity and flow rate.

Direct Solution

First calculate the dimensionless head loss parameter:

_ gd’hy  (9.81 m/s%)(0.3 m)*(8.0 m)

= 5.30E7
£ (100 m)(2 E-5 m*/s)”
Now enter Eq. (6.51) to find the Reynolds number:
0.0002 1.775
Re, = —[8(5.3 E7)]"*1 ( I >: 72,600
e = ~[8G3ED]Tlog| =7 53E7

3The parameter { was suggested by H. Rouse in 1942.
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The velocity and flow rate follow from the Reynolds number:

_ WRe; (2 E-5 m¥s)(72,600)
d 0.3m

~ 4.84 m/s

0= vg & = <4.84?)§ (0.3 m)? =~ 0.342 m’/s frz,

No iteration is required, but this idea falters if additional losses are present. Note that we
never bothered to compute the friction factor.

Iterative Solution

By definition, the friction factor is known except for V:

d?2g

J= h/ZW = (8111)(

0.3m >[2(9.81 m/s?

100 m V2 } or  fV2=~ 0471 (SI units)

To get started, we only need to guess f, compute V = V0.471/f, then get Re,, compute a
better f from the Moody chart, and repeat. The process converges fairly rapidly. A good first
guess is the “fully rough” value for e/d = 0.0002, or f~ 0.014 from Fig. 6.13. The itera-
tion would be as follows:

Guess f= 0.014, then V = V0.471/0.014 = 5.80 m/s and Re, = Vd/v = 87,000. At
Re, = 87,000 and e/d = 0.0002, compute f,.,, = 0.0195 [Eq. (6.48)].

New = 0.0195, V = V0.471/0.0195 = 4.91 m/s and Re, = Vd/v = 73,700. At Re,
= 73,700 and e/d = 0.0002, compute f.,, = 0.0201 [Eq. (6.48)].

Better f = 0.0201, V = V0.471/0.0201 = 4.84 m/s and Re, =~ 72,600. At Re, =
72,600 and e/d = 0.0002, compute f;.,, = 0.0201 [Eq. (6.48)].

We have converged to three significant figures. Thus our iterative solution is

V = 4.84 m/s
T\ ™ 2 3
0= V(Z)d = (4.84)(2)(0.3) ~ 0.342 m’/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by
engineers. Obviously this repetitive procedure is ideal for a personal computer.

Engineering Equation Solver (EES) Solution

In EES, one simply enters the data and the appropriate equations, letting the software do the
rest. Correct units must of course be used. For the present example, the data could be entered
as SI:

rho=950 nu=2E-5 d=0.3 L=100 epsod=0.0002 hf=8.0 g=9.81

The appropriate equations are the Moody formula (6.48) plus the definitions of Reynolds num-
ber, volume flow rate as determined from velocity, and the Darcy head loss formula (6.10):

Re=V*d/nu
Q=V*pi*d*2/4
f=(—2.0*1ogl0 (epsod/3.7+2.51/Re/£"0.5)) " (—2)

hf=£*L/d*V*2/2/g
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Type 3 Problem: Find the Pipe
Diameter

EES understands that “pi” represents 3.141593. Then hit “SOLVE” from the menu. If errors
have been entered, EES will complain that the system cannot be solved and attempt to
explain why. Otherwise, the software will iterate, and in this case EES prints the correct
solution:

Q0=0.342 V=4.84 £f=0.0201 Re=72585
The units are spelled out in a separate list as [m, kg, s, NJ]. This elegant approach to engi-
neering problem solving has one drawback—namely, that the user fails to check the solu-

tion for engineering viability. For example, are the data typed correctly? Is the Reynolds
number turbulent?

The Moody chart is especially awkward for finding the pipe size, since d occurs in
all three parameters f, Re,, and €/d. Further, it depends on whether we know the veloc-
ity or the flow rate. We cannot know both, or else we could immediately compute
d = V4QI/(mV),

Let us assume that we know the flow rate Q. Note that this requires us to redefine
the Reynolds number in terms of Q:

Re, = > - P (6.52)

Then, if we choose (Q, p, n) as scaling parameters (to eliminate d), we obtain the

functional relationship
40 ghy o’ EV)
Re, = — = fi , —
€ wdy Cn( Lv’’ Q

and can thus solve d when the right-hand side is known. Unfortunately, the writer
knows of no formula for this relation. Here it seems reasonable to forgo a plot or
curve fitted formula and to simply set up the problem as an iteration in terms of the
Moody chart variables. In this case we also have to set up the friction factor in terms
of the flow rate:

d%_ﬂlghid'j

The following two examples illustrate the iteration.

EXAMPLE 6.10

Work Example 6.9 backward, assuming that Q = 0.342 m*/s and € = 0.06 mm are known
but that ¢ (30 cm) is unknown. Recall L = 100 m, p = 950 kg/m®, » = 2 E-5 m%s, and

Iterative Solution

First write the diameter in terms of the friction factor:

_m (9.81 m/s*)(8 myd”
8 (100 m)(0.342 m’/s)

= 8.284° or d =~ 0.655f" (1)



6.7 Four Types of Pipe Flow Problems 377

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:

4(0.342m%s) 21,800

_ - 2
T TQESm¥sd  d @
€ OES5m
€_ 8
p P 3)

Guess f, compute d from (1), then compute Re, from (2) and €/d from (3), and compute a
better f from the Moody chart or Eq. (6.48). Repeat until (fairly rapid) convergence. Having
no initial estimate for f, the writer guesses f =~ 0.03 (about in the middle of the turbulent
portion of the Moody chart). The following calculations result:

f=003  d=06550.03)" = 0325m
21,800 e

~ ~ 67,000 S~ 185E4
%= 0325 d
Eq. (6.48): fuw = 00203  then  dy,, ~ 0301 m
Re ey = 72,500 2 ~2.0E4
Eq. (6.48): Jreter = 0.0201 and d = 0.300 m Ans.

The procedure has converged to the correct diameter of 30 cm given in Example 6.9.

EES Solution

For an EES solution, enter the data and the appropriate equations. The diameter is
unknown. Correct units must of course be used. For the present example, the data should
use SI units:

rho=950 nu=2E-5 L=100 eps=6E-5 hf=8.0 g=9.81 Q=0.342
The appropriate equations are the Moody formula, the definition of Reynolds number, vol-
ume flow rate as determined from velocity, the Darcy head loss formula, and the roughness
ratio:

Re=V*d/nu
Q=V*pi*d*2/4
f=(—2.0*1logl0 (epsod/3.7+2.51/Re/£%0.5)) " (—2)
hf=f*L/d*V*2/2/g
epsod=eps/d
Hit Solve from the menu. Unlike Example 6.9, this time EES complains that the system
cannot be solved and reports “logarithm of a negative number.” The reason is that we
allowed EES to assume that f could be a negative number. Bring down Variable Informa-

tion from the menu and change the limits of f so that it cannot be negative. EES agrees and
iterates to this solution:

d=0.300 V=4.84 £=0.0201 Re=72,585

The unit system is spelled out as (m, kg, s, N). As always when using software, the user
should check the solution for engineering viability. For example, is the Reynolds number
turbulent? (Yes.)
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Table 6.2 Nominal and Actual
Sizes of Schedule 40 Wrought

Steel Pipe*

Nominal size, in

Actual ID, in

1L R 00w | — 0ol—

—
[SIE

[\ S}
b —

[

[8%)

0.269
0.364
0.493
0.622
0.824
1.049
1.610
2.067
2.469
3.068

*Nominal size within 1 percent for 4 in or

larger.

Type 4 Problem:
Find the Pipe Length

EXAMPLE 6.11

Work Moody’s problem, Example 6.6, backward to find the wall roughness € if everything
else is known: V = 6 ft/s, d = 0.5 ft, L = 200 ft, p = 1.94 slug/ft3, n = 2.09E-5 slug/ft-s,
hy = 4.5 ft.

Solution

e Analytic solution: This is not as bad as having the diameter unknown, because € appears
in only one parameter, €/d. We can immediately calculate Q, Re,, and the friction factor:

Q = VaR* = (6.0 ft/s)m(0.25 ft)> = 1.18 ft¥/s

_pvd _ (1.94 slug/ft)(6 ft/5)(0.5 ft)
M 2.09¢e — 5 slug/ft — s

Re, = 278,500
hy 45 ft

f= Lid)(VH2g) (200 ft/0.5 f)[ (6 ft/s)%/2/(32.2 f/sY)]

= 0.0201

With f and Re,; known, we look on the Moody chart or solve Eq. (6.48) for the rough-
ness ratio:

ed 251 ) 1 eld 2.51 )

= =201 4 =—-201 TR e ——
Vi Og‘0(3.7 Re, V7 & V0.0201 Og'0(3.7 2785001/0.0201
After a bit of ugly manipulation, we calculate e/d = 0.000871, or € = 0.000435 ft. Ans.

e EES solution: Simply type in the data, in BG units (ft, s, Ibf, slugs):
rho=1.94 mu=2.09E-5 d=0.5 V=6.0 L=200 hf=8.0 g=32.2
Then type in the same five defining formulas for pipe flow that we used in Example 6.11:
Re=rho*V*d/mu
Q=V*pi*d*2/4
f=(—2.0*1ogl0 (epsod/3.7 + 2.51/Re/f".5)) " (—2)
hf=£*L/d*v"*2/2/g
epsod=eps/d

With any reasonable guess for € > 0, EES promptly returns € = 0.000435 ft. Ans.

e Comments: Finding the roughness is not as hard as finding the diameter. The discrep-
ancy from Moody’s value of € = 0.00040 ft was caused by rounding off h, to 4.5 ft.

In discussing pipe sizing problems, we should remark that commercial pipes are
made only in certain sizes. Table 6.2 lists standard water pipe sizes in the United
States. If the sizing calculation gives an intermediate diameter, the next largest pipe
size should be selected.

In designing piping systems, it is desirable to estimate the appropriate pipe length for
a given pipe diameter, pump power, and flow rate. The pump head will match the
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piping head loss. If minor losses are neglected, the (horizontal) pipe length follows
from Darcy’s formula (6.10):

Lv
d2g

Power

oW = 6.54
g0 TS (654

Ppump =
With Q, and d, and ¢ known, we may compute Re,; and f, after which L is obtained
from the formula. Note that pump efficiency varies strongly with flow rate (Chap. 11).
Thus, it is important to match pipe length to the pump’s region of maximum efficiency.

EXAMPLE 6.12

A pump delivers 0.6 hp to water at 68°F, flowing in a 6-in-diameter asphalted cast iron hor-
izontal pipe at V = 6 ft/s. What is the proper pipe length to match these conditions?

Solution

* Approach: Find hyfrom the known power and find f from Re, and &/d. Then find L.

e Water properties: For water at 68°F, Table A.3, converting to BG units, p = 1.94 slug/ft®
and u = 2.09E—5 slug/(ft — s).

* Pipe roughness: From Table 6.1 for asphalted cast iron, ¢ = 0.0004 ft.

* Solution step 1: Find the pump head from the flow rate and the pump power:

3
0=av="2005 ft)2(6ﬁ) T
4 S S

Power

6h ft - 1bf)/(s - h
o = (0.6 hp)[S550(ft - Ibf)/(s - hp)] AR
pgQ

h =
(1.94 slug/ft*) (32.2 ft/s%) (1.18 ft'/s)

* Solution step 2: Compute the friction factor from the Colebrook formula, Eq. (6.48):

_pVd _ (1.94)(6)(0.5)

& _ 0.0004 ft
Rey = — = =

=9 hd
2.09 E-5 78,500 d 0.5 ft
eld 2.51

1
— =~ —201o = 3F
Vi gl°<3.7 Re,\VF
* Solution step 3: Find the pipe length from the Darcy formula (6.10):

= 0.0008

> yields f= 0.0198

(6 ft/s)*
2(32.2 ft/s?)
L =~ 203 ft

0.5 ft

Solve for

LV? L
h, = hy = 4.48 ft :fgg = (0.0198)(—)
Ans.

e Comment:
unknown.

This is Moody’s problem (Example 6.6) turned around so that the length is

If the duct is noncircular, the analysis of fully developed flow follows that of the circular
pipe but is more complicated algebraically. For laminar flow, one can solve the exact equa-
tions of continuity and momentum. For turbulent flow, the logarithm law velocity profile
can be used, or (better and simpler) the hydraulic diameter is an excellent approximation.

“This section may be omitted without loss of continuity.
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The Hydraulic Diameter

For a noncircular duct, the control volume concept of Fig. 6.7 is still valid, but the
cross-sectional area A does not equal R> and the cross-sectional perimeter wetted
by the shear stress P does not equal 27R. The momentum equation (6.9a) thus
becomes

ApA + pgAALsin¢p — 7,9 AL =0
or hy=—+ Az =—— (6.55)

This is identical to Eq. (6.9b) except that (1) the shear stress is an average value inte-
grated around the perimeter and (2) the length scale A/% takes the place of the pipe
radius R. For this reason a noncircular duct is said to have a hydraulic radius R,
defined by

A cross-sectional area
R,=—= - (6.56)
P wetted perimeter

This concept receives constant use in open-channel flow (Chap. 10), where the chan-
nel cross section is almost never circular. If, by comparison to Eq. (6.11) for pipe
flow, we define the friction factor in terms of average shear

87,
=— 6.57
fNCD p D ( )

where NCD stands for noncircular duct and V = Q/A as usual, Eq. (6.55) becomes

LV LV
hy=f——=f—— 6.58
7=/ 4R,2g ' D,2g (6.55)
This is equivalent to Eq. (6.10) for pipe flow except that d is replaced by 4R;,. There-
fore we customarily define the hydraulic diameter as

D—ﬁ— 4 X area _ AR 6.59
"7 %  wetted perimeter ! (6.59)

We should stress that the wetted perimeter includes all surfaces acted upon by the
shear stress. For example, in a circular annulus, both the outer and the inner perime-
ter should be added. The fact that D, equals 4R, is just one of those things: Chalk it
up to an engineer’s sense of humor. Note that for the degenerate case of a circular
pipe, D), = 4wR*/(2mR) = 2R, as expected.

We would therefore expect by dimensional analysis that this friction factor f, based
on hydraulic diameter as in Eq. (6.58), would correlate with the Reynolds number and
roughness ratio based on the hydraulic diameter

f= F(% Di> (6.60)
h

and this is the way the data are correlated. But we should not necessarily expect the
Moody chart (Fig. 6.13) to hold exactly in terms of this new length scale. And it does



Fig. 6.14 Fully developed flow
between parallel plates.

Flow between Parallel Plates

Laminar Flow Solution
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/

b — o

not, but it is surprisingly accurate:

64 .
*+40% laminar flow
Re D,

f= (6.61)
€
fMoody(ReDh‘ D_> +15% turbulent flow
h

Now let us look at some particular cases.

Probably the simplest noncircular duct flow is fully developed flow between parallel

plates a distance 2h apart, as in Fig. 6.14. As noted in the figure, the width b =>> h, so

the flow is essentially two-dimensional; that is, # = u(y) only. The hydraulic diameter is
D pe i 4(2bh) 4h (6.62)

= -_—— lm — .
TP 5= 2b + 4k
that is, twice the distance between the plates. The pressure gradient is constant,
(—dpldx) = Ap/L, where L is the length of the channel along the x axis.

The laminar solution was given in Sect. 4.10, in connection with Fig. 4.16b. Let us
review those results here:

< y2> h* Ap
U= tpx| 1 —55) where ug,=-——
h 2u L
0= 2bk° Ap
3u L
0 WA 2
V===——== 6.63
du Ap  3uV
Tw = M|~ =h— =
dy y=nh L h
Ap  3uLV
hy=—"=

pg  pgh’



382 Chapter 6 Viscous Flow in Ducts

Turbulent Flow Solution

Now use the head loss to establish the laminar friction factor:
_ hy _ 9%u 96

(LID)(V’I2g)  pV(4h)  Rep,
Thus, if we could not work out the laminar theory and chose to use the approxima-
tion f = 64/Re, , we would be 33 percent low. The hydraulic-diameter approximation
is relatively crude in laminar flow, as Eq. (6.61) states.

Just as in circular-pipe flow, the laminar solution above becomes unstable at about
Rep, = 2000; transition occurs and turbulent flow results.

Jiam (6.64)

For turbulent flow between parallel plates, we can again use the logarithm law, Eq.
(6.28), as an approximation across the entire channel, using not y but a wall coordi-
nate Y, as shown in Fig. 6.14:
1. Yu*
N LM p o<v<a (6.65)
u* K v
This distribution looks very much like the flat turbulent profile for pipe flow in Fig.
6.11b, and the mean velocity is
1(" 1 hu* 1
V=—| udY=u*-In—+ B — — (6.66)
h o K v K
Recalling that V/u* = (8/f)"?, we see that Eq. (6.66) is equivalent to a parallel-plate
friction law. Rearranging and cleaning up the constant terms, we obtain

]% ~ 2.0 log (Rep, f*) — 1.19 (6.67)
where we have introduced the hydraulic diameter D, = 4h. This is remarkably close
to the smooth-wall pipe friction law, Eq. (6.38). Therefore we conclude that the use
of the hydraulic diameter in this turbulent case is quite successful. That turns out to
be true for other noncircular turbulent flows also.

Equation (6.67) can be brought into exact agreement with the pipe law by rewrit-
ing it in the form

1
Jm = 2.0 log (0.64 Re,)hf”z) - 0.8 (6.68)
Thus the turbulent friction is predicted most accurately when we use an effective diame-
ter Degr equal to 0.64 times the hydraulic diameter. The effect on fiitself is much less, about
10 percent at most. We can compare with Eq. (6.64) for laminar flow, which predicted
64 2

D, = =D, (6.69)

Parallel plates: D = —
arallel plates eff = oo 3

This close resemblance (0.64D;, versus 0.667D;,) occurs so often in noncircular duct
flow that we take it to be a general rule for computing turbulent friction in ducts:

4A
Dy =D, = P reasonable accuracy

64
Dy, .
(fRep,)laminar theory

Dg = better accuracy (6.70)
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Jones [10] shows that the effective-laminar-diameter idea collapses all data for rec-
tangular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe flow.
We recommend this idea for all noncircular ducts.

EXAMPLE 6.13

Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of
2.4 in apart. Find the head loss and pressure drop for each 100 ft of length for p = 1.9
slugs/ft® and (a) v = 0.00002 ft*/s and (b) v = 0.002 ft*/s. Assume smooth walls.

Solution

The viscosity u = pv = 3.8 X 107 slug/(ft - s). The spacing is 2k = 2.4 in = 0.2 ft, and
D, = 4h = 0.4 ft. The Reynolds number is

_ VD, _ (60 ft/s)(0.4 ft)

B, — - 12
o, 0.00002 f/s 0,000

The flow is therefore turbulent. For reasonable accuracy, simply look on the Moody chart
(Fig. 6.13) for smooth walls:

LV 100 (6.0)*
f=00173 hy=f——=0.0173 — CRY) ~ 242 ft Ans. (a)
D, 2g 0.4 2(32.2)
Since there is no change in elevation,
Ap = pgh; = 1.9(32.2)(2.42) = 148 Ibf/ft* Ans. (a)

This is the head loss and pressure drop per 100 ft of channel. For more accuracy, take
Dy = %Dh from laminar theory; then

Reosr = 56(120,000) = 80,000

and from the Moody chart read f = 0.0189 for smooth walls. Thus a better estimate is

100 (6.0)?
h,= 0.0189 — = 2.64 ft
y = 001895, 2(32.2) 6
and Ap = 1.9(32.2)(2.64) = 161 Ibf/ft> Better ans. (a)

The more accurate formula predicts friction about 9 percent higher.

Compute w = pv = 0.0038 slug/(ft - s). The Reynolds number is 6.0(0.4)/0.002 = 1200;
therefore the flow is laminar, since Re is less than 2300.
You could use the laminar flow friction factor, Eq. (6.64)

96 96
flam:7:7=0.08
Rel),, 1200
_ 100 (6.0
from which hy = 0.08 — = 1121t
rom whic 'f 0.4 2(32.2)

and Ap = 1.9(32.2)(11.2) = 684 Ibf/ft* Ans. (b)
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Flow through a Concentric
Annulus

Fig. 6.15 Fully developed flow
through a concentric annulus.

Alternately you can finesse the Reynolds number and go directly to the appropriate lami-

nar flow formula, Eq. (6.63):

_r A
3u L
Ay = 360 1US[0.0038 slug/(ft - $)](100 )
& (0.1 ft)?
A 684
and b= =2 = ——— — 1121t
pg 1.9(32.2)

= 684 slugs/(ft « s?) = 684 Ibf/ft>

This is one of those (perhaps unexpected) problems where the laminar friction is greater

than the turbulent friction.

Consider steady axial laminar flow in the annular space between two concentric cylin-
ders, as in Fig. 6.15. There is no slip at the inner (r = b) and outer radius (r = a).

For u = u(r) only, the governing relation is Eq. (D.7):

d

d
—\ =K K=—(@+
dr(m ) r dx(p Pg2)

Integrate this twice:
LK Cilnr+C
u=-r— nr
4 m 1 2
The constants are found from the two no-slip conditions:
4

1,K
ur=a)=0=-a ;+C11na+C2

1 ,K
ur=5b=0=-*—+C/Inb + C,
4 u

u(r)

u(r)

6.71)



Table 6.3 Laminar Friction Factors
for a Concentric Annulus

bla fRep,  De/Dy = 1L
0.0 64.0 1.000
0.00001 70.09 0.913
0.0001 71.78 0.892
0.001 74.68 0.857
0.01 80.11 0.799
0.05 86.27 0.742
0.1 89.37 0.716
0.2 92.35 0.693
0.4 94.71 0.676
0.6 95.59 0.670
0.8 95.92 0.667
1.0 96.0 0.667
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The final solution for the velocity profile is

1{ 4+ )H2 Pyl “] (6.72)
= — ——— a — n-— .
T | TP T PR In(bla) 7
The volume flow is given by
Q Ja ) d 7T|: d(p—l— ):||: 4 b4 (az_b2)2:| (673)
= radr = —| ——— 4 - e .
e 8ul ax? T PEI In (a/b)

The velocity profile u(r) resembles a parabola wrapped around in a circle to form a
split doughnut, as in Fig. 6.15.

It is confusing to base the friction factor on the wall shear because there are two
shear stresses, the inner stress being greater than the outer. It is better to define f with
respect to the head loss, as in Eq. (6.58),

f= hf& 28 where V = 9 (6.74)
LV m(a* — b?)
The hydraulic diameter for an annulus is
4r(a® — b
Dy=———"—"=2a—> 6.75
" mat ) 9T (67)

It is twice the clearance, rather like the parallel-plate result of twice the distance
between plates [Eq. (6.62)].

Substituting Ay Dy, and V into Eq. (6.74), we find that the friction factor for lam-
inar flow in a concentric annulus is of the form

64¢ B (a — b)Xd* — b?)

" Rey, C= 0 — (@ — ) (@lb)

(6.76)

The dimensionless term { is a sort of correction factor for the hydraulic diameter. We
could rewrite Eq. (6.76) as

64 Re = 1R 6.77

Re., Ceff e ep, (6.77)
Some numerical values of f Rep, and Dey/D;, = 1/{ are given in Table 6.3. Again,
laminar annular flow becomes unstable at Re,, = 2000.

For turbulent flow through a concentric annulus, the analysis might proceed by
patching together two logarithmic law profiles, one going out from the inner wall to
meet the other coming in from the outer wall. We omit such a scheme here and pro-
ceed directly to the friction factor. According to the general rule proposed in Eq. (6.61),
turbulent friction is predicted with excellent accuracy by replacing d in the Moody
chart by Doy = 2(a — b)/{, with values listed in Table 6.3.° This idea includes rough-
ness also (replace €/d in the chart by €/Dg). For a quick design number with about
10 percent accuracy, one can simply use the hydraulic diameter D;, = 2(a — b).

Concentric annulus: f=

SJones and Leung [44] show that data for annular flow also satisfy the effective-laminar-diameter idea.
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EXAMPLE 6.14

What should the reservoir level A be to maintain a flow of 0.01 m*/s through the commer-
cial steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take p =
1000 kg/m* and » = 1.02 X 10~ m?s for water.

a=5cm
b=3cm @
S~ —
[ Q,V
——

L=30m

Water

E6.14

Solution

o Assumptions: Fully developed annulus flow, minor losses neglected.

e Approach: Determine the Reynolds number, then find f and A, and thence h.

e Property values: Given p = 1000 kg/m3 and v = 1.02E-6 m?/s.

e Solution step 1: Calculate the velocity, hydraulic diameter, and Reynolds number:
y_2_ 0.01 m*/s

A 7[(0.05m)* — (0.03 m)*]
D), = 2(a — b) = 2(0.05m — 0.03 m) = 0.04 m
VD, _ (1.99 m/s)(0.04 m)
v 1.02E-6 m*/s

m
=1.99—
S

Rep, = = 78,000 (turbulent flow)

e Solution step 2: Apply the steady flow energy equation between sections 1 and 2:

2

1% 1%
&+h+z1=&+m+z2+hf
pg  2g pg  2g
1% %] L
or h=2 2+hf=—2(a2+ff) (1)
2g 2g D,

Note that z; = h. For turbulent flow, from Eq. (3.43¢), we estimate a, =~ 1.03

e Solution step 3: Determine the roughness ratio and the friction factor. From Table 6.1,
for (new) commercial steel pipe, € = 0.046 mm. Then

€ 0.046 mm
—=———"=0.00115
D, 40 mm

For a reasonable estimate, use Re), to estimate the friction factor from Eq. (6.48):

1 ey (0‘00115 N 2.51
- = —Z2.\ 10
VF 80\ 737 T 78,000VF

For slightly better accuracy, we could use D = D;,/{. From Table 6.3, for b/la = 3/5, 1/{ =
0.67. Then Doz = 0.67(40 mm) = 26.8 mm, whence Re, = 52,300, €/D.x = 0.00172, and

) solve for f = 0.0232



Other Noncircular Cross Sections

Table 6.4 Laminar Friction
Constants fRe for Rectangular and
Triangular Ducts

Rectangular Isosceles triangle
b <
a
bla SfRep, 0, deg SfRep,
0.0 96.00 0 48.0
0.05 89.91 10 51.6
0.1 84.68 20 529
0.125 82.34 30 533
0.167 78.81 40 529
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 56.91 90 48.0

Fig. 6.16 Illustration of secondary
turbulent flow in noncircular ducts:
(a) axial mean velocity contours;
(b) secondary flow in-plane cellu-
lar motions. (After J. Nikuradse,
dissertation, Gtiingen, 1926.)
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fere = 0.0257. Using the latter estimate, we find the required reservoir level from Eq. (1):

V2 L 1.99 m/sy’ 30
= —z(az +feff—) = (78)2[1.03 + 002572 | ~41m  Ans.
2 TD,) . 2(9.81 m/s) 0.04m

e Comments: Note that we do not replace D;, by D.g in the head loss term fL/D,,, which
comes from a momentum balance and requires hydraulic diameter. If we used the sim-
pler friction estimate, f = 0.0232, we would obtain & = 3.72 m, or about 9 percent lower.

In principle, any duct cross section can be solved analytically for the laminar flow
velocity distribution, volume flow, and friction factor. This is because any cross sec-
tion can be mapped onto a circle by the methods of complex variables, and other pow-
erful analytical techniques are also available. Many examples are given by White
[3, pp. 112-115], Berker [11], and Olson and Wright [12, pp. 315-317]. Reference
34 is devoted entirely to laminar duct flow.

In general, however, most unusual duct sections have strictly academic and not
commercial value. We list here only the rectangular and isosceles-triangular sections,
in Table 6.4, leaving other cross sections for you to find in the references.

For turbulent flow in a duct of unusual cross section, one should replace d by D;, on
the Moody chart if no laminar theory is available. If laminar results are known, such
as Table 6.4, replace d by D .y = [64/(fRe)]D,, for the particular geometry of the duct.

For laminar flow in rectangles and triangles, the wall friction varies greatly, being
largest near the midpoints of the sides and zero in the corners. In turbulent flow
through the same sections, the shear is nearly constant along the sides, dropping off
sharply to zero in the corners. This is because of the phenomenon of turbulent
secondary flw, 1in which there are nonzero mean velocities v and w in the plane of
the cross section. Some measurements of axial velocity and secondary flow patterns
are shown in Fig. 6.16, as sketched by Nikuradse in his 1926 dissertation. The

U —— Midplane

(a) (b)
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6.9 Minor or Local Losses
in Pipe Systems®

secondary flow “cells” drive the mean flow toward the corners, so that the axial veloc-
ity contours are similar to the cross section and the wall shear is nearly constant. This
is why the hydraulic-diameter concept is so successful for turbulent flow. Laminar
flow in a straight noncircular duct has no secondary flow. An accurate theoretical
prediction of turbulent secondary flow has yet to be achieved, although numerical

models are often successful [36].

EXAMPLE 6.15

Air, with p = 0.00237 slug/ft* and v = 0.000157 t*/s, is forced through a horizontal square
9-by 9-in duct 100 ft long at 25 ft*/s. Find the pressure drop if € = 0.0003 ft.

Solution

Compute the mean velocity and hydraulic diameter:

25600 -
= 5 = . S
(075 fo?
)
) 9= o075t

o 36 in

From Table 6.4, for b/a = 1.0, the effective diameter is

4
D = ——D, = 0.843 ft
f 5691 "
VD,  44.4(0.843
whence Re, = —< = 0 0801 57) = 239,000
0.0003
&= = 0.000356
Dy 0843

From the Moody chart, read f = 0.0177. Then the pressure drop is

L V? 100 44.4>
Ap = pghy = pg| f——— ) = 0.00237(32.2)| 0.0177—_
Dy 2g
or Ap = 5.5 Ibf/ft

Pressure drop in air ducts is usually small because of the low density.

For any pipe system, in addition to the Moody-type friction loss computed for the
length of pipe, there are additional so-called minor losses or local losses due to

1.

Pipe entrance or exit.

2. Sudden expansion or contraction.

3.

Bends, elbows, tees, and other fittings.

®This section may be omitted without loss of continuity.

0.75 2(32.2)
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4. Valves, open or partially closed.
5. Gradual expansions or contractions.

The losses may not be so minor; for example, a partially closed valve can cause a
greater pressure drop than a long pipe.

Since the flow pattern in fittings and valves is quite complex, the theory is very
weak. The losses are commonly measured experimentally and correlated with the pipe
flow parameters. The data, especially for valves, are somewhat dependent on the par-
ticular manufacturer’s design, so that the values listed here must be taken as average
design estimates [15, 16, 35, 43, 46].

The measured minor loss is usually given as a ratio of the head loss &,, = Ap/(pg)
through the device to the velocity head V?/(2g) of the associated piping system:

hy, Ap

Loss coefficient K VZ/(2g) %sz (6.78)
Although K is dimensionless, it often is not correlated in the literature with the
Reynolds number and roughness ratio but rather simply with the raw size of the pipe
in, say, inches. Almost all data are reported for turbulent flow conditions.

A single pipe system may have many minor losses. Since all are correlated with
V?/(2g), they can be summed into a single total system loss if the pipe has constant
diameter:

V2 (1L
Ahtot = hf + 2hm = 2g<d + 2K> (6.79)

Note, however, that we must sum the losses separately if the pipe size changes so that
V2 changes. The length L in Eq. (6.79) is the total length of the pipe axis.

There are many different valve designs in commercial use. Figure 6.17 shows five
typical designs: (a) the gate, which slides down across the section; (b) the globe,
which closes a hole in a special insert; (c¢) the angle, similar to a globe but with a
90° turn; (d) the swing-check valve, which allows only one-way flow; and (e) the
disk, which closes the section with a circular gate. The globe, with its tortuous flow
path, has the highest losses when fully open. Many excellent details about these and
other valves are given in the handbooks by Skousen [35] and Smith and Zappe [52].

Table 6.5 lists loss coefficients K for four types of valve, three angles of elbow fit-
ting, and two tee connections. Fittings may be connected by either internal screws or
flanges, hence the two listings. We see that K generally decreases with pipe size,
which is consistent with the higher Reynolds number and decreased roughness ratio
of large pipes. We stress that Table 6.5 represents losses averaged among various
manufacturers, so there is an uncertainty as high as =50 percent.

In addition, most of the data in Table 6.5 are relatively old [15, 16] and therefore
based on fittings manufactured in the 1950s. Modern forged and molded fittings may
yield somewhat different loss factors, often less than listed in Table 6.5. An exam-
ple, shown in Fig. 6.18a, gives recent data [48] for fairly short (bend-radius/elbow-
diameter = 1.2) finged 90° elbows. The elbow diameter was 1.69 in. Notice fst
that K is plotted versus Reynolds number, rather than versus the raw (dimensional)
pipe diameters in Table 6.5, and therefore Fig. 6.18a has more generality. Then notice
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Fig. 6.17 Typical commercial valve
geometries: (a) gate valve;

(b) globe valve; (¢) angle valve;
(d) swing-check valve; (e) disk-
type gate valve.

; g, /"V

(a) )

%/‘ V%?@Wﬁl
—_— D V%/%AT

(@)

()
(e)

that the K values of 0.23 % 0.05 are signifiantly less than the values for 90° elbows
in Table 6.5, indicating smoother walls and/or better design. One may conclude that
(1) Table 6.5 data are probably conservative and (2) loss factors are highly depend-
ent on actual design and manufacturing factors, with Table 6.5 serving only as a
rough guide.

The valve losses in Table 6.5 are for the fully open condition. Losses can be much
higher for a partially open valve. Figure 6.18b gives average losses for three valves
as a function of “percentage open,” as defined by the opening-distance ratio 4/D (see
Fig. 6.17 for the geometries). Again we should warn of a possible uncertainty of *50
percent. Of all minor losses, valves, because of their complex geometry, are most sen-
sitive to manufacturers’ design details. For more accuracy, the particular design and
manufacturer should be consulted [35].

The butterfl valve of Fig. 6.19a is a stem-mounted disk that, when closed, seats
against an O-ring or compliant seal near the pipe surface. A single 90° turn opens the
valve completely, hence the design is ideal for controllable quick-opening and quick-
closing situations such as occur in fire protection and the electric power industry.
However, considerable dynamic torque is needed to close these valves, and losses are
high when the valves are nearly closed.

Figure 6.19b shows butterfly-valve loss coefficients as a function of the opening
angle 6 for turbulent flow conditions (6 = 0 is closed). The losses are huge when the
opening is small, and K drops off nearly exponentially with the opening angle. There



Table 6.5 Resistance Coefficients
K = hm/[VZ/(2g)] for Open Valves,
Elbows, and Tees

Fig. 6.18a Recent measured loss
coeftiients for 90° elbows. These
values are less than those reported
in Table 6.5. (From Ref. 48, cour-
tesy of R. D. Coffild.)
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Nominal diameter, in

Screwed Flanged
i 1 2 4 1 2 4 8 20

Valves (fully open):

Globe 14 8.2 6.9 5.7 13 8.5 6.0 5.8 5.5

Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03

Swing check 5.1 29 2.1 2.0 2.0 2.0 2.0 2.0 2.0

Angle 9.0 4.7 2.0 1.0 4.5 24 2.0 2.0 2.0
Elbows:

45° regular 0.39 0.32 0.30 0.29

45° long radius 0.21 0.20 0.19 0.16 0.14

90° regular 2.0 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21

90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10

180° regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20

180° long radius 0.40 0.30 0.21 0.15 0.10
Tees:

Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07

Branch flow 24 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41
is a factor of 2 spread among the various manufacturers. Note that K in Fig. 6.19b

is, as usual, based on the average pipe velocity V = Q/A, not on the increased veloc-
ity of the flow as it passes through the narrow valve passage.

A bend or curve in a pipe, as in Fig. 6.20, always induces a loss larger than the sim-
ple straight-pipe Moody friction loss, due to flow separation on the curved walls and a
swirling secondary flow arising from the centripetal acceleration. The smooth-wall loss

0.34

0.28

0.26

K factor

0.24

0.22

0.20

0.18

0.16

0.05

0.1

02 03

Legend

@ Plastic elbow
® Metal elbow no. 1
O Metal elbow no. 2

Curve-fit correlation
K =149 Re 014

0.5

1.0

Reynolds number (millions)

20 3.04.0
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Fig. 6.18b Average loss
coefficients for partially open
valves (see sketches in Fig. 6.17).

(@)

Fig. 6.19 Performance of butterfly
valves: (a) typical geometry (Cour-
tesy of Tyco Engineered Products
and Services); (b) loss coefficients
for three different manufacturers.
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coefficients K in Fig. 6.20, from the data of Ito [49], are for fotal loss, including Moody
friction effects. The separation and secondary flow losses decrease with R/d, while the
Moody losses increase because the bend length increases. The curves in Fig. 6.20 thus
show a minimum where the two effects cross. Ito [49] gives a curve-fit formula for the
90° bend in turbulent dw:

~1.96

0.84
90° bend: K =~ 0.388a (E) Rep %! where a = 0.95 + 442(3) =1 (6.80a)

The formula accounts for Reynolds number, which equals 200,000 in Fig. 6.20. Com-
prehensive reviews of curved-pipe flow, for both laminar and turbulent flow, are given
by Berger et al. [53] and for 90° bends by Spedding et al. [54].

As shown in Fig. 6.21, entrance losses are highly dependent on entrance geome-
try, but exit losses are not. Sharp edges or protrusions in the entrance cause large
zones of flow separation and large losses. A little rounding goes a long way, and a



Fig. 6.20 Resistance coefficients
for smooth-walled 45° 90° and
180° bends, at Re,; = 200,000,
after Ito [49].

Fig. 6.21 Entrance and exit loss
coefficients: (a) reentrant inlets;

(b) rounded and beveled inlets. Exit
losses are K = 1.0 for all shapes
of exit (reentrant, sharp, beveled,
or rounded). (From Ref. 37.)
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1.0

Sudden expansion
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Sudden contraction:
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Fig. 6.22 Sudden expansion and | | |
contraction losses. Note that the 0 0.2 0.4 0.6 0.8 1.0

loss is based on velocity head in
the small pipe.

Ol

well-rounded entrance (r = 0.2d) has a nearly negligible loss K = 0.05. At a sub-
merged exit, on the other hand, the flow simply passes out of the pipe into the large
downstream reservoir and loses all its velocity head due to viscous dissipation. There-
fore K = 1.0 for all submerged exits, no matter how well rounded.

If the entrance is from a finite reservoir, it is termed a sudden contraction (SC)
between two sizes of pipe. If the exit is to finite-sized pipe, it is termed a sudden
expansion (SE). The losses for both are graphed in Fig. 6.22. For the sudden expan-
sion, the shear stress in the corner separated flow, or deadwater region, is negligible,
so that a control volume analysis between the expansion section and the end of the

separation zone gives a theoretical loss:

&V h
Keg=|1-75) = 52—
SF ( Dz) V2/(2g)

Note that K is based on the velocity head in the small pipe. Equation (6.80) is in

excellent agreement with experiment.

For the sudden contraction, however, flow separation in the downstream pipe
causes the main stream to contract through a minimum diameter d.,;,, called the vena
contracta, as sketched in Fig. 6.22. Because the theory of the vena contracta is not
well developed, the loss coefficient in the figure for sudden contraction is experi-

mental. It fits the empirical formula

d2

up to the value d/D = 0.76, above which it merges into the sudden-expansion prediction,

Eq. (6.80).



Fig. 6.23 Flow losses in a gradual
conical expansion region, as calcu-
lated from Gibson’s sugges